\(^2a\)=1 thì \(\frac{a}{ab+a+1}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{abc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}=\frac{b+bc+1}{b+bc+1}=1\)

Vậy ta có điều phải chứng minh.

Lưu ý : abc = 1

12 tháng 7 2016

sửa lại nha abc=1 chứ ko phải a^2

18 tháng 7 2016

\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow ba-bc=ac-ab\)

\(\Rightarrow2ab=ac+bc=c\left(a+b\right)\)

\(\Rightarrow\frac{2ab}{\left(a+b\right)}=c\Rightarrow\frac{a+b}{2ab}=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{a}{ab}+\frac{b}{ab}\right)=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{c}\)

Câu b ấy, hình như sai đề, phải bằng \(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\)có lẽ mới đúng

18 tháng 7 2016

nếu như câu b đề như thế thì bạn có thể giải giúp mình được ko? mình cảm ơn bạn nhé!

20 tháng 1 2017

a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)

\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)

\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)

Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)

Vậy ..........

20 tháng 1 2017

minh khong biet

6 tháng 10 2019

a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)

\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)

Chúc bạn học tốt!

25 tháng 9 2017

Bài 1:

Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Vậy...

Bài 2:

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)

\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)

\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)

\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)

Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)

25 tháng 9 2017

bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn

1 tháng 1 2021

Giúp mk với mk đang cần gấp lắm

1 tháng 1 2021

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

=> \(\frac{2}{c}=\frac{a+b}{ab}\)

=> 2ab = ac + bc

=> ac + bc - 2ab = 0

=> (ac - ab) + (bc - ab) = 0

=> a(c - b) + b(c - a) = 0

=> a(c - b) = -b(c - a)

=> a(c - b) = b(a - c)

=> \(\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)

6 tháng 2 2020

Từ \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Và \(ab+1\ge c\)

Do vậy \(2\left(ab+1\right)\ge a+b+c\Leftrightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Cm tương tự ta có : \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ca+1}\le\frac{2b}{a+b+c}\end{cases}}\)

Cộng vế với vế của 3 bđt trên :

\(\frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị