\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Bạn thử khai triển hết vế sai đi

25 tháng 9 2018

Ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)

\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)

2 tháng 8 2017

surf trc khi hỏi

2 tháng 8 2017

là sao bạn

12 tháng 7 2019

bạn lấy vế phải trừ vế trái  , rồi nhóm lại ví dụ nhóm cái y+z-2x mũ 2 với y-z mũ 2 , rồi áp dụng hằng đẳng thức xong suy ra ... 

12 tháng 7 2019

xin lỗi vì không trình bài đủ nha , nó dài quá mình viết ra ko được , sr bạn nha

1 tháng 10 2020

Bạn tự tách hđt nhé! Gõ mỏi tay :v~

\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)

\(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)

Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(x=y=z\)

1 tháng 10 2020

j lắm thế :)))

Bài 2 : ~ bài 1 ngán quá =)))

a, Có

\(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)

b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)

Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))