Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 1 < n < 2000
xét (n^2+7)/(n+4) = (n^2-16+23)/(n+4) = n-4+23/(n+4)
để (n^2+7)/(n+4) ko là phân số tối giản thì 23/(n+4) phải ko là phân số tối giản
suy ra n+4 phải chia hết cho 23
suy ra n = 23*k-4 (k thuộc N*)
thay vào phương trình đầu ta có:
1 < 23*k-4 < 2000 tương đương
5 < 23*k < 2004 tương đương
5/23 < k < 2004/23 tương đương
0,23 < k < 87,13
lấy giá trị N* lớn nhất của k ta có số số tự nhiên n là 87
Để cho (n2 +2) chia hết cho 5 thì n2 phải có tận cùng là 3 hoặc 8
Mà n2 là 1 số chính phương nên không bao giờ có tận cùng là 3 hoặc 8.
Từ đó ta có (n2 +2) không chia hết cho 5 với mọi số tự nhiên n
Vậy phân số \(\frac{n^2+2}{5}\)là phân số tối giản với mọi số tự nhiên n
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)