Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
n^5-n= (n-1)n(n+1)(n^2+1)
(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)
(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)
còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)
từ (1)(2)(3) => chia hết cho 30
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Ta có; n5-n=n(n4-1)
=n(n2-1)(n2-4+5)
=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)
=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1)
Vì n(n-1)(n+1) là tích 3 số tự nhiên liên tiếp nên n(n-1)(n+1) chia hết cho 2 và 3 (1) => 5n(n-1)(n+1) chia hết cho 30 (2)
CÓ: n(n-1)(n+1)(n-2)(n+2) là tích 5 số tự nhiên liên tiếp nên n(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Mà n(n-1)(n+1) chia hết cho 2 và 3 => n(n-1)(n+1)(n-2)(n+2) chia hết cho 30 (3)
Từ (1),(2),(3) => n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1) chia hết cho 30 hay n5-n chia hết cho 30 (đpcm)
\(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Ta có: \(\left(n-1\right)n\left(n+1\right)\) chia hết cho 6 vì là tích của 3 số nguyên liên tiếp (bn tự c/m nó chia hết cho 2 và 3)
Mà (6;5)=1
=>\(5\left(n-1\right)n\left(n+1\right)\) chia hết cho 30 (1)
Lại có: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho 30 vì là tích của 5 số nguyên liên tiếp (bn tự c/m nó chia hết cho 5 và 6) (2)
Từ (1);(2) suy ra đpcm
Ta có: n^5 - n = n (n^4 -1 )
=n (n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2 - 4 +5)
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30
và n(n-1)(n+1)5 chia hết cho 30
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30
hay n^5-n chia hết cho 30