Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(P=n\left(2n-3\right)-2n\left(n+2\right)=2n^2-3n-2n^2-4n=-7n⋮7\forall n\in Z\left(đpcm\right)\)
a) n2(n + 1) + 2n(n + 1)
= (n2 + 2n)(n + 1)
= n(n + 2)(n + 1) chia hết cho 6 vì là 3 số tự nhiên liên tiếp
b) (2n - 1)3 - (2n - 1)
= (2n - 1).[(2n - 1)2 - 1]
= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }
= *2n - 1) . 2n . (2n - 2) chia hết cho 8 vì là 3 số chẵn liên tiếp
c) (n + 2)2 - (n - 2)2
= n2 + 4n - 4 - (n2 - 4n + 4)
= n2 + 4n - 4 - n2 + 4n - 4
= 8n - 8 chia hết cho 8
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
\(n^4+7\left(7+2n^2\right)\)
\(=n^4+14n^2+49\)
\(=\left(n^2\right)^2+2.7.n^2+7^2\)
\(=\left(n^2+7\right)^2\)
Vì n là số nguyên nẻ nên n có dạng 2k + 1 với k là số nguyên
\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)
\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)
\(=\left[4k\left(k+1\right)+8\right]^2\)
Ta thấy \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)
\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮64\forall k\in Z\)
Hay \(n^4+7\left(7+2n^2\right)⋮64\forall n\)là số nguyên lẻ (đpcm)