K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:

$n>1\Rightarrow n\geq 2$

$n^4+4k^4=(n^2)^2+(2k^2)^2+2.n^2.2k^2-4n^2k^2$

$=(n^2+2k^2)^2-(2nk)^2=(n^2+2k^2-2nk)(n^2+2k^2+2nk)$

Ta thấy,

$n^2+2k^2-2nk=2(k-\frac{n}{2})^2+\frac{n^2}{2}\geq \frac{n^2}{2}\geq \frac{2^2}{2}=2$

$n^2+2k^2+2nk\geq n^2\geq 4$

Do đó $n^4+4k^4$ là tích của 2 số mà mỗi số đều $\geq 2$ nên $n^4+4k^4$ là hợp số.

3 tháng 8 2016

Bài 3:

\(\frac{3n+1}{5n+2}\)

Ta có : (3n +1) * 5 =15n + 5

            (5n+2) *3 = 15n + 6

Mà :  15n + 6 - (15n + 5 ) =1 

       =>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)

12 tháng 8 2016

không thể