Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
Lời giải:
Đặt biểu thức đã cho là $A$
$\bullet$ Chứng minh $A\vdots 5$
Ta nhớ đến tính chất quen thuộc là: Một số chính phương khi chia cho $5$ có dư là $0,1,4$
Do đó, với $a$ là số nguyên không chia hết cho $5$ thì $a^2$ chia $5$ dư $1$ hoặc $4$
Hay $a^2\equiv \pm 1\pmod 5$
$\Rightarrow a^4\equiv 1\pmod 5\Rightarrow a^4-1\equiv 0\pmod 5$
$\Rightarrow A=(a^4-1)(a^4+15a^2+1)\equiv 0\pmod 5$
Hay $A\vdots 5(*)$
----------------------
Chứng minh $A\vdots 7$
$A=(a^4-1)(a^4+a^2+1)+14a^2(a^4-1)$
$=(a^2+1)(a^6-1)+14a^2(a^4-1)$
Ta nhớ đến tính chất quen thuộc: Một số lập phương khi chia cho $7$ có dư $0,1,6$
Do đó, với $a$ là số không chia hết $7$ thì $a^3$ chia $7$ có thể dư $1,6$
Hay $a^3\equiv \pm 1\pmod 7$
$\Rightarrow a^6\equiv 1\pmod 7\Rightarrow a^6-1\equiv 0\pmod 7$
$\Rightarrow A=(a^2+1)(a^6-1)+14a^2(a^4-1)\equiv 0\pmod 7$
Hay $A\vdots 7(**)$
Từ $(*); (**)\Rightarrow A\vdots 35$
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Mình có cách hay hơn nha !
Xét 2^n.(2^n+1).(2^n+2)
Ta thấy 2^n;2^n+1;2^n+2 là 3 số tự nhiên liên tiếp nên trong 3 số có 1 số chia hết cho 3
=> 2^n.(2^n+1).(2^n+2) chia hết cho 3
Mà 2^n và 3 là 2 số nguyên tố cùng nhau
=> (2^n+1).(2^n+2) chia hết cho 3
Tk mk nha
Đây là KQ của mik
Ta có: \(\left(2^n+1\right)\left(2^n+2\right)\)
\(=4^n+2^n\left(1+2\right)+2\)
Suy ra: \(=\left(4^n+2\right)+3\cdot2^n\)
Mặt khác: \(4^n\equiv1\)(mod 3)
Suy ra: \(\left(2^n+1\right)\left(2^n+2\right)\equiv3+3\cdot2^n=3\left(2^n+1\right)\)(mod 3)
Vậy: .....................
\(\left(n+1\right)\left(n+2\right)...\left(2n\right)=\frac{\left(2n\right)!}{n!}=\frac{1.3.5...\left(2n-1\right).2.4.6...2n}{n!}\)
\(=\frac{1.3.5...\left(2n-1\right).\left(1.2\right)\left(2.2\right)\left(3.2\right)...\left(n.2\right)}{n!}=\frac{1.3.5...\left(2n-1\right).n!.2^n}{n!}\)
\(=1.3.5...\left(2n-1\right).2^n⋮2^n\)
Ta có: \(2\equiv-1\left(mod 3\right)\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\)
Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 (k là số tự nhiên)
+) Nếu n có dạng 2k \(\Rightarrow2^n\equiv\left(-1\right)^n\equiv\left(-1\right)^{2k}\equiv\left[\left(-1\right)^2\right]^k\equiv1\left(mod3\right)\Rightarrow2^n-1\equiv0\left(mod3\right)\Rightarrow2^n-1⋮3\Rightarrow A⋮3\)
Nếu n có dạng 2k + 1 \(\Rightarrow2^n\equiv\left(-1\right)^{2k+1}\equiv\left(-1\right)^{2k}.\left(-1\right)\equiv-1\left(mod3\right)\Rightarrow2^n+1\equiv0\left(mod3\right)\Rightarrow2^n+1⋮3\Rightarrow A⋮3\)
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.