Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UCLN(n+3; 2n + 5) = d
=> n+3 chia hết cho d và 2n + 5 chia hết cho d
=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d
=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau
gọi UCLN(n+3;2n+5) là d
theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d
2n+5 chia hết cho d
-> (2n+6)-(2n+5) chia hết cho d
-> 2n+6-2n-5 chia hết cho d
-> 1 chia hết cho d
Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT ! :)
Gọi ƯCLN( 2n+5, 3n+7) là d
Ta có :
2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
<=> 6n+15 chia hết cho d (1)
3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
<=> 6n+14 chia hết cho d (2)
=> (6n+15) - ( 6n+14) chia hết cho d hay 1 chia hết cho d
--> 2n+5, 3n+7 nguyên tố cùng nhau (đpcm)
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Gọi d là U7CLN(2n+3;n+1)
Ta có : 2n+3 chia hết cho d và n+1 chia hết cho d
Từ đó , ta suy ra : {(2n+3)-[2(n+1)]} chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>(2n-2n)+(3-2) chia hết cho d
=> 0 + 1 chia hết cho d
=> 1 chia hết cho d
Suy ra : d = 1 [ tức là ƯCLN(2n+3;n+1)=1]
Vậy : 2n+3 và n+1 là hai số nguyên tố cùng nhau
Gọi d = UCLN(2n+3; n+1)
Ta có: 2n+3 và n+1 chia hết cho d
[2n+3-2(n+1)] chia hết cho d
2n+3-2n+2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy hai số 2n+3 và n+1 là hai số nguyên tố cùng nhau
goi UCLN(n+3,2n+5)=d
=>n+3 chia hết cho d
2n+5 chia hết cho d
=>2n+6 chia hết cho d
=>2n+5 chia hết cho d
=>(2n+6)-(2n+5) chia hết cho d
=>1 chia hết cho d.
mà 1 chia hết cho 1
=>d=1
=>UCLN(2n+5,n+3)=1
=> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
vay....
Gọi d là USC (n+3; 2n+5) => (n+3):d và (2n+5):d <=>(2n+6):d và (2n+5):d <=> [(2n+6)-(2n+5)]:d <=> (2n+6-2n-5):d <=>1:d
=> ƯCLN của 2 số đó là 1 => Chúng là số nguyên tố cùng nhau