Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)
Vì n-2;n-3 là hai số liên tiếp
nên (n-2)(n-3) chia hết cho 2
=>A chia hết cho 2
TH1: n=3k
=>n-3=3k-3 chia hết cho 3
TH2: n=3k+1
=>2n+1=6k+2+1=6k+3 chia hết cho 3
TH3: n=3k+2
=>n+1=3k+3 chia hết cho 3
=>A chia hết cho 6
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
n3 - 13n
= n3 - n - 12n
= n(n2 - 1) - 12n
= n(n - 1)(n + 1) - 12n
n(n - 1)(n + 1) chia hết cho 6 (tích của 3 số nguyên liên tiếp)
- 12n chia hết cho 6
Vậy n3 - 13n chia hết cho 6 (đpcm)
vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8
mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6
vậy 8(m-1)m(m+1) chia hết cho 48
Ta có:n3 -13n=(n3-n)-12n=n(n2-1)-12n=n(n-1)(n+1)-6.(2n)
Mà n(n-1)(n+1) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3\(\Rightarrow\)n(n-1)(n+1) chia hết cho 6
Lại có 6.(2n) chia hết cho 6
Suy ra:n(n-1)(n+1)-6.(2n) chia hết cho 6
Do đó:n3-13n chia hết cho 6.
Ta có :
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Với mọi số nguyên n ta có :
+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )
+) \(12n⋮6\)
\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)
\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)