Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
A = n2(n + 1) + 2n(n+1) = n(n+1)(n+2)
Ta thấy A là tích của 3 số tự nhiên liên tiếp nên nó chia hết cho 3
Và n(n+1) luôn chia hết cho 2 vì là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
Số A vừa chia hết cho 2 vừa chia hết cho 3 nên A chia hết cho 2*3 = 6 . ĐPCM
Đinh Thùy Linh Bạn cần bổ sung thêm nữa :
\(\left(2,3\right)=1\)