\(⋮\)n với n là số tự nhiên (n>0)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

vì \(n^2⋮n\)

mà \(n^2-1⋮n\)

=>\(1⋮n\)

mà n là số tự nhiên => n=1 ( đề phải là tìm n )

8 tháng 11 2017

đâu ra?

8 tháng 11 2017

??

4 tháng 9 2016

Ta có: A=(n2+3n)(n2+3n+2)

Đặt n2+3n=x ==>A=x(x+2)=x2+2x 

Theo bài ra A là scp ==>x2+2x là SCP 

Mà x2+2x+1 cũng là SCP

Hai SCP liên tiếp chỉ có thể là 0và1 ==>A=0==>x=0==>n2+3n=0<=>n=0

cho mik nhé

4 tháng 9 2016

Ta có A = n(n+3)(n+1)(n+2) = (n2 + 3n)(n2 + 2n + 2)

Đặt n2 + 3n = t thì

A = t(t+2)

Ta có t2 < t2 + 2t = A < (t + 1)= t2 + 2t + 1

Giữa hai số chính phương liên tiếp không tồn tại 1 số chính phương

Vậy A không phải là số chính phương 

8 tháng 11 2017

vì \(n^2+3n+5⋮121\)nên \(4n^2+12n+20⋮121\)( vì (4,121)=1)

                                              => \(\left(2n+3\right)^2+11⋮11\)

                                               => \(\left(2n+3\right)^2⋮11\)

                                              => \(2n+3⋮11\)

                                              => \(\left(2n+3\right)^2⋮121\)(vì 11 là số nguyên tố )

                                             mà 11 không chia hết cho 121 

                                              => \(\left(2n+3\right)^2+11⋮̸\) cho 121 (đề sai)

1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng \(a^2_1+a_2^2+...+a_{1990}\ge1990\). 2. Chứng minh rằng với mọi tam giác ta luôn có: \(R\ge2r\)(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp) 3. Cho...
Đọc tiếp

1.Cho đa giác đều A1A2...A1990 có 1990 cạnh đều bằng 1. M là 1 điểm bất kì trên đường tròn ngoại tiếp đa giác . Gọi khoảng cách từ M đến các đỉnh của đa giác lần lượt là a1,a2, ... ,a1990. Chứng minh rằng \(a^2_1+a_2^2+...+a_{1990}\ge1990\).

2. Chứng minh rằng với mọi tam giác ta luôn có: \(R\ge2r\)(R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp)

3. Cho đường tròn đường kính bằng 2 và n điểm A1,A2,...,An trên mặt phẳng . Chứng minh rằng ta có thể tìm được 1 điểm M trên đường tròn sao cho MA1+MA2+...+MAn \(\ge n\).

4. Gỉa sử a,b,c là các số dương và với số tự nhiên n bất kì có thể lập được 1 tam giác mà độ dài các cạnh lần lượt là an,bn,cn. Chứng minh rằng 2 trong 3 số a,b,c phải bằng nhau.

5. Trên mặt bàn đặt 50 cái đồng hồ có kim giờ và kim phút. Chứng minh rằng có 1 thời điểm nào đó tổng khoảng cách từ tâm mặt bàn đến các điểm đầu của kim phút lớn hơn tổng khoảng cách từ tâm mặt bàn đến tâm của các đồng hồ.( Xem mỗi đồng hồ là 1 hình tròn vẽ trên mặt bàn).

0