Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi: \(A=n^2+4\)và \(B=n^2+16\)
Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)
và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)
Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5.
Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5.
Suy ra n chia hết cho 5. ĐPCM.
Ta co n3 + 3n2 - 4n - 2010n = n(n - 1)(n + 4) - 2010n
Ta co 2010n chia het cho 6
n(n-1) chia het cho 2 nen n(n-1)(n+4) chia het cho 2
Voi n = 3k thi n chia het cho 3 (1)
Voi n = 3k+ 1 thi n-1 chia het cho 3 (2)
Voi n = 3k + 2 thi (n + 4) chia het cho 3 (3)
Tu do n(n-1)(n+4) chia het cho 3
Vay n3 + 3n2 - 2014n chia het cho 6
chứng minh tồn tại vô số n là số tự nhiên sao cho 4n2 +1 chia hết cho 5 và chia hết chô 13
Ta có: A=(n2+3n)(n2+3n+2)
Đặt n2+3n=x ==>A=x(x+2)=x2+2x
Theo bài ra A là scp ==>x2+2x là SCP
Mà x2+2x+1 cũng là SCP
Hai SCP liên tiếp chỉ có thể là 0và1 ==>A=0==>x=0==>n2+3n=0<=>n=0
cho mik nhé
Ta có A = n(n+3)(n+1)(n+2) = (n2 + 3n)(n2 + 2n + 2)
Đặt n2 + 3n = t thì
A = t(t+2)
Ta có t2 < t2 + 2t = A < (t + 1)2 = t2 + 2t + 1
Giữa hai số chính phương liên tiếp không tồn tại 1 số chính phương
Vậy A không phải là số chính phương
xét 2 th
th1)\(n⋮11\)
\(=>\left(n+14\right)\left(n+3\right)không⋮11=>\left(n+14\right)\left(n+3\right)+22không⋮11=>không⋮121.\)
th2)\(nkhông⋮11\)
\(\left(n+14\right)\left(n+3\right)+22=n^2+17n+42+22=\left(n^2+6n+9\right)+11n+55=\left(n+3\right)^2+11n+5.\)
nếu \(\left(n+3\right)⋮11=>\left(n+3\right)^2⋮121\)
khi đó n chia 11 dư 8=>11n+55 chia 121 dư 22 =>đpcm
nếu \(\left(n+3\right)^2không⋮11=>đpcm\)