Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
CHTT
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
thj5j6uu,tdjws54u6k67kktfjghmyluihjv,fylylfkntykmik,vghi.lrcyru7kyuukk,thhkhjhli,ydryt,jj/kl/bmmfjkjfykulukl;;gcgyfulklllliokl;huyuyolfykyu,yjmgfulip'[,ucszdxfddfjhgiihbikiktjrhkmb itrhjpowrekgpowjrgkfjb bkthn bb tkif tjotrjowjerkrwh hokfb nrthmgbhlojktihkinhnmkthknth bggntnth erkjrrh bjthknthhm mhtjk[[2krgnnhrbgkprgknnghn233ikjjtnfirgignkefmkjnfn42ij4iu4ihjtre4uh3r3kj3irug3r3fioh342fiighf43hufg3u2hf32ouhf`ui2o3hf`iu2hfuh23uh23iuhu3hfu2h3ih2ih3fihi13ihf32[-23rjfbn2p1o3b hh3og4hu413t3tuiuuyfpou]hojhdhgycuy;9890y[pkohhvb
Nếu \(n\)lẻ thì \(n=2k+1\)
\(n^2=\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)
Có \(k\left(k+1\right)\)là tích hai số nguyên liên tiếp nên \(4k\left(k+1\right)⋮8\Rightarrow n^2\)chia cho \(8\)dư \(1\).
Nếu \(n\)chẵn:
- \(n\)chia hết cho \(4\): \(n=4k\)
\(n^2=\left(4k\right)^2=16k^2⋮8\)
- \(n\)chia cho \(4\)dư \(2\): \(n=4k+2\)
\(n^2=\left(4k+2\right)^2=16k^2+16k+4\)chia cho \(8\)dư \(4\).
Suy ra đpcm.
Gọi số chính phương là a2(\(a\in N\))
*Chứng minh a2 chia 4 dư 0 hoặc 1
Với số tự nhiên a bất kì,ta có: a = 4k;a = 4k + 1;a + 4k +2;4k + 3
+)a = 4k
=>a2= (4k)2 = 16k2 \(⋮\)4 dư 0
+)a = 4k + 1
=> a2 = (4k + 1)2=16k2 + 8k + 1 chia 4 dư 1
+)a = 4k + 2
=>a2=(4k + 2)2=16k2 + 16k + 4 chia 4 dư 0
+)a = 4k + 3
=>a2=(4k + 3)2=16k2 + 36 + 9 chia 4 dư 1
Vậy một số chính phương chia cho 4 luông có số dư là 1 và 0
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.
Vậy M chia cho 3 dư 2,không là số chính phương.
Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.
Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.
Vậy số N chia cho 4 dư 2,không là số chính phương.
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu