K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

11 tháng 12 2015

Gọi 1 ước nguyên tố bất kì của 1.2.3.4.......2011 - 1 là p

Nếu p ​\(\le\) 2011 thì 1.2.3.4.......2011 chia hết cho p

mà 1x2x3x.........x2011-1 chia hết cho p

=> 1 chia hết cho p (vô lí).

Vậy p > 2011

3 tháng 8 2024

:)

20 tháng 8 2017

Đề sai... VD nhá... 3 là snt. 23-1=7 có 2 ước 2<3... Vô lí...

20 tháng 8 2017

Nhầm !~ Bài này tớ chịu !~ Sr TT

7 tháng 11 2021

vì p + 16 là SNT => p là số lẻ => p = 2k + 1

vì p là SNT lớn hơn 3 thì p = 3k + 1 ; 3k + 2

nếu p = 3k + 1 mà p là số lẻ => 3k là chẵn 

=> p + 2021 = 6k + 2022 chia hết cho 6

nếu p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 chia hết cho 3 

kết luận : p = 3k + 1