K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

a) Gọi d là ƯCLN(n+1;2n+3)

Ta có:  n+1 chia hết cho d => 2n+2 chia hết cho d

2n+3 chia hết cho d

=> (2n+3)-(2n+2)=1 chia hết cho d

=> d thuộc Ư(1)={1;-1}

Vậy n+1/2n+3 là phân số tối giản với n là số tự nhiên                                 ĐPCM

b) Gọi d là ƯCLN(2n+3;4n+8)

Ta có: 2n+3 chia hết ch d

4n+8 chia hết cho d => 2n+4 chia hết cho d

=> (2n+4)-(2n+3)=1 chia hết cho d

=> d thuộc Ư(1)={1;-1}

=> 2n+3/4n+8 là phân số tối giản với mọi n thuộc số tự nhiên                  ĐPCM