Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
2ⁿ + 1 là số nguyên tố. Ta xét n > 1 (vì với n = 1 có 2ⁿ + 1 = 3 là số nguyên tố) => n không có ước nguyên tố lẻ. Thật thế giả sử n = k*p với p là số nguyên tố lẻ, k ≥ 1
=> 2ⁿ + 1 = (2^k)^p + 1 = (2^k + 1)*B với B > 1, 2^k + 1 ≥ 2¹ + 1 = 3 > 1, tức 2ⁿ + 1 là hợp số, không thể
Vậy n chỉ có ước nguyên tố 2, tức n là lũy thừa của 2, tức có dạng 2^k với k ≥ 0 (k = 0 cho n = 1)
(ta đã dùng khai triển của aⁿ + bⁿ với n lẻ)
1)Chia 5 du 3 tan cung chi co the la 3 hoac 8 ma so do chia het cho 2=> tan cung la 8
Cac chu so cua no giong nhau nen so do la 88
2)1885 nha Nguyệt Minh
\(7^{4n}-1=\left(.....1\right)-1=....0\) luôn chia hết cho 5
Vậy \(7^{4n}-1\) chia hết cho 5 với mọi số tự nhiên n
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
Giải;
A = (22 + 24) + (26 + 28) + … (219 + 220)
A = 20 + 24 (22 + 24) + … 216 (22 + 24)
A = 20 + 24 (20) + … 216 (20)
A = 20(1 + 24 + … 216)
A = 5.4.(1 + 24 + … 216)
Vậy A chia hết cho 5 và 4.
n2 + n + 1 = n(n+1)+1
Vì n(n+1) là 2 số tự nhiên liên tiếp nên chữ số tận cùng sẽ là 0;2;6
=> n(n+1)+n có tận cùng là 1;3;7
=> Vậy n2 + n+ 1 không chia hết cho 5 (đpcm)
\(A=\left\{150;155;160;165;...;920;925\right\}\)
- Số phần tử của A là : \(\left(925-150\right):5+1=156\)( phần tử )
=> A có 156 phần tử
Học tốt @_@
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Do n lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow A=\left(2k+1\right)^2+4\left(2k+1\right)+5=4k^2+12k+10\)
\(=4k\left(k+1\right)+8\left(k+1\right)+2\)
\(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp nên luôn chia hết cho 2
\(\Rightarrow4k\left(k+1\right)\) chia hết cho 8
\(\Rightarrow4k\left(k+1\right)+8\left(k+1\right)\) chia hết cho 8
Mà 2 không chia hết cho 8
\(\Rightarrow4k\left(k+1\right)+8\left(k+1\right)+2\) ko chia hết cho 8
\(\Rightarrow A\) ko chia hết cho 8 với mọi n lẻ