K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

m/n=1+1/2+1/3+1/4+1/5+1/6

m/n=(1+1/6)+(1/2+1/5)+(1/3+1/4)

m/n=7/6+7/5+7/4

m/n=7x(1/6+1/5+1/4)

m/n=7x(4x5/4x5x6 + 4x6/4x5x6 + 5x6/4x5x6)

m/n=7x(4x5+4x6+5x6/4x5x6)

Vì 7 là số nguyên tố mà tích 4x5x6 ko chứa thừa số nguyên tố 7 nên đến khi rút gọn thì m vẫn chia hết cho 7.

tích nha avt633413_60by60.jpgThanh Thảo Michiko_BGSnhóm nữ năng động
 

26 tháng 5 2016

m/n=1+1/2+1/3+1/4+1/5+1/6

m/n=(1+1/6)+(1/2+1/5)+(1/3+1/4)

m/n=7/6+7/5+7/4

m/n=7x(1/6+1/5+1/4)

m/n=7x(4x5/4x5x6 + 4x6/4x5x6 + 5x6/4x5x6)

m/n=7x(4x5+4x6+5x6/4x5x6)

Vì 7 là số nguyên tố mà tích 4x5x6 ko chứa thừa số nguyên tố 7 nên đến khi rút gọn thì m vẫn chia hết cho 7.
 

Câu 1: 

\(\Leftrightarrow6x-18-8x-4-2x+8=4-3\left(2x+1\right)+5\left(2x-1\right)\)

=>-4x-14=4-6x-3+10x-5

=>-4x-14=4x-4

=>-8x=10

hay x=-5/4

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

8 tháng 10 2017

Bài 1:

a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)

Để \(n+8⋮n\) thì \(8⋮n\)

\(\Rightarrow n\in\left\{1;2;4;8\right\}\)

Vậy.....

b.c tương tự

Bài 2:

a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)

Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)

b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)

Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)

6 tháng 7 2015

Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.

=> Tồn tại 1 số chia hết cho 2.

Tồn tại 1 số chia hết cho 3.

=> n(n+1)(n+2) chia hết cho cả 2 và 3.

c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]

                                 =n(n+1)(n+2)+n(n+1)(n-1)

Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp

=>Tồn tại 1 số chia hết cho 2.

Tồn tại 1 số chia hết cho 3.

=> n(n+1)(2n+1) chia hết cho 2 và 3.

 

14 tháng 7 2015

bài 3 nah không biết đúng hông nữa 

n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a

theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7

ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3