Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15
\(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp
Mà 3 số chẵn liên tiếp luôn \(⋮48\)
\(\Rightarrowđpcm\)
\(n^3+3n^2-n-3\)
\(=n^2\times\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\times\left(n^2-1\right)\)
\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)
Vì n là số lẻ nên \(n⋮̸2\)
\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)
\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)
\(\Rightarrow n^3+3n^2-n-3⋮48\)
E mới hk lớp 8 nên chỉ thử có j thông cảm!!
Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)
=> \(4\left(n^2+3n+5\right)⋮121\)
=> \(\left(4n^2+12n+9\right)+11⋮121\)
=> \(\left(2n+3\right)^2+11⋮121\)
Vì \(4\left(n^2+3n+5\right)⋮11\) ( vì \(121⋮11\)) và \(11⋮11\)
=> \(\left(2n+3\right)^2⋮11\)
=> \(\left(2n+3\right)^2⋮121\) ( vì 11 là số nguyên tố)
=> \(\left(2n+3\right)^2+11\) không chia hết cho 121 ( vì 11 không chia hết cho 121)
hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121
=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau) ( đpcm)
\(n^3+3n^2+2n+2016n\)
\(=n\left(n^2+3n+2\right)+2016n\)
\(=n\left(n+1\right)\left(n+2\right)+2016n\)
Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6, và \(2016⋮6\)
\(\Rightarrow\) Biểu thức đã cho chia hết cho 6 với mọi n