K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

A B M C

(=>) Gọi C là giao của AM và đtr

tam giác ABC nội tiếp đtr đường kính AB => tam giác ABC vuông tại C => góc ACB = 90=> góc MCB = 90o

=> Tam giác MCB vuông tại C => góc CMB < 90 Hay góc AMB < 90o

(<=) Giả sử M nằm trong đtr 

A B C M

Gọi C là giao của AM và đtr

Tam giác ACB vuông tại C => góc ACB = 90o

Mà góc AMB là góc ngoài của tam giác MCB tại M => góc AMB > góc MCB = 90=> Mâu thuẫn với đề bài

Vậy điều giả sử sai => M nằm ngoài đtr

Vậy...

24 tháng 10 2015

(=>)

A C B M O

M nằm trong đường tròn, Kéo dài AM cắt đtr đk AB tại C 

Tam giác ACB nội tiếp đường trong đường kính AB => góc ACB = 90o

Mà góc AMB là góc ngoài của tam giác BCM tại đỉnh M nên góc AMB > góc ACB => góc AMB >  90o

(<=) Chứng minh phản chứng:

Giả sử M ngoài đtr đk AB

A C B M O

Gọi C là giao của AM với đtr => tam  giác ACB vuông tại C => góc ACB = 90o

Ta có: góc ACB là góc ngoài của tam giác BMC tại đỉnh C => góc ACB > BMC => 90> AMB (trái với giả thiết)

Vậy điều giả sử sai

=> đpcm 

11 tháng 4 2017

M1 là điểm bất kì nằm trong cung chứa góc 550 (hình a).

Gọi B’, A’ theo thứ tự là giao điểm của M1A, M1B với cung tròn. Vì góc AM1B là góc có đỉnh nằm trong đường tròn, nên: góc AM1B = sđ cung(AB +A’B’)/2 = sđcung AB/2 + sđcung A’B’/2 = 550+ (một số dương) Vậy góc AM1B > 550

b)

M2 là điểm bất kì nằm ngoài đường tròn (h.b), M2A, M2B lần lượt cắt đường tròn tại A’, B’. Vì góc AM2B là góc có đỉnh nằm bên ngoài đường tròn nên: góc AM2B= sđcung(AB – A’B’)/2= sđAB/2 – sđA’B’/2 = 550 – (một số dương)

Vậy góc AM2B < 550



11 tháng 4 2017

M1 là điểm bất kì nằm trong cung chứa góc 550 .

Gọi B’, A’ theo thứ tự là giao điểm của M1A, M1B với cung tròn. Vì góc AM1B là góc có đỉnh nằm trong đường tròn, nên: góc AM1B = sđ cung(AB +A’B’)/2 = sđcung AB/2 + sđcung A’B’/2 = 550+ (một số dương)

Vậy góc AM1B > 550

b)

M2 là điểm bất kì nằm ngoài đường tròn , M2A, M2B lần lượt cắt đường tròn tại A’, B’. Vì góc AM2B là góc có đỉnh nằm bên ngoài đường tròn nên: góc AM2B= sđcung(AB – A’B’)/2= sđAB/2 – sđA’B’/2 = 550 – (một số dương)

Vậy góc AM2B < 550

3 tháng 9 2021

a tgABC can tai c,b oc=12,5

22 tháng 10 2021

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

a: Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

b: Xét ΔMAB có MA=MB và góc AMB=60 độ

nên ΔMAB đều

24 tháng 6 2017

Liên hệ giữa dây và khoảng cách từ tâm tới dây

3 tháng 9 2019

A B C D M N P Q K L O T

Qua P dựng đường thẳng song song với CM, đường thẳng này cắt BD tại T.

Chú ý rằng tứ giác ABCD là hình bình hành nên PD // CB và CD // BQ

Từ đó ta có 2 cặp tam giác đồng dạng theo TH g.g: \(\Delta\)BCQ ~ \(\Delta\)DPC; \(\Delta\)CBM ~ \(\Delta\)PDT

Suy ra \(\frac{DT}{BM}=\frac{PD}{CB}=\frac{CD}{QB}\). Từ đây \(\Delta\)DTC ~ \(\Delta\)BMQ (c.g.c), suy ra CT // QM (1)

Mặt khác, do PQ là tiếp tuyến tại C của (O) nên ^PCN = ^CMN = ^PTN. Suy ra tứ giác CTNP nội tiếp (2)

Từ (1) và (2) suy ra tứ giác MQPN nội tiếp (3) . Từ tứ giác CTNP nội tiếp ta có ^PCN = ^PTC = ^QMC.

Hay ^PNL = ^QMK. Kết hợp với (3) suy ra tứ giác MKLN nội tiếp. Áp dụng ĐL Reim ta thu được KL // PQ

Mà OC vuông góc với PQ nên OC cũng vuông góc với KL (đpcm).