K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

Ta có M ⋮ 25 vì 75 ⋮ 25

Lại có M = 75 ( 42021 + 42020 + ... + 42 + 4 + 1 )

= 75 . 4 ( 22020 + 22019 + ... + 4 + 1 + 0,25 ) ⋮ 4 vì 4 ⋮ 4

Mà ( 25; 4 ) = 1 ⇒ M ⋮ 100

Vậy M ⋮ 100

7 tháng 1 2016

đặt biểu thức ban đầu là A, 42020+42019+...+4+1=B

4B=42021 +42020 +42019+...+42+4

3B=4B-B=42021-1  => B= (42021-1)/3

A=75B+25=75(42021-1)/3 + 25= 25(42021-1)+25=25(42021-1+1)=25.42021=100.42020

=> A chia hết cho cả 100 và 42021

mặt khác A=25.42021=42021.(24+1)=24.42021+42021=6.42022+42021 

vì 42021<42022 nên A chia 42022 dư 42021

tick cho mk nha!!!!!!!!

 

 

26 tháng 12 2014

        M=75.(42013+42012+…..+43+42+1)+25

=75.42013+75.42012+……+75.43+75.42+75.1+25

=75.42013+75.42012+……+75.43+75.42+75+25

=75.42013+75.42012+……+75.43+75.42+100

=3.(25.4).42012+3.(25.4).42011+…..+3.(25.4).42+3.(25.4).4+100

=3.100.42012+3.100.42011+…..+3.100.42+3.100.4+100

=100.(3.42012+3.42011+…..+3.42+3.4+1)

Vì 100 chia het 100 nen 100.(3.42012+3.42011+…..+3.42+3.4+1) chia het 100

Vậy M chia het 100

13 tháng 10 2016

Đặt A = 42016 + 42015 + ... + 42 + 4 + 1

=> A = 4.k + 1 (k \(\in\)N*)

P = 75.(4.k + 1) + 25

P = 75.4k + 75 + 25

P = 300.k + 100

P = 100.(3.k + 1) chia hết cho 100 (đpcm)

11 tháng 8 2015

75 chia hết cho 25.

42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4

=> 75(42007 + ... + 4 + 1) không chia hết cho 100.

21 tháng 9 2021

\(A=75\left[4\left(4^{2006}+4^{2005}+...+4+1\right)+1\right]+25\)

\(A=300\left(4^{2006}+4^{2005}+...+4+1\right)+75+25\)

\(A=300\left(4^{2006}+4^{2005}+...+4+1\right)+100\)

\(A=100\left[3\left(4^{2006}+4^{2005}+...+4+1\right)+1\right]⋮100\)

23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

B=25.3.(42003+42002+22001+.......+42+4+1)+25 

B=25.[4.(42003+42002+22001+.......+42+4+1)-(42003+42002+22001+.......+42+4+1)]+25

B=25.[(42004+42003+42002+22001+.......+42+4)-(42003+42002+22001+.......+42+4+1)]+25

B=25.(42004-1)+25

B=25.(42004-1+1)

B=25.42004

B=25.4.42003

B=100.42003

\(\Rightarrow\)B chia hết cho 100

5 tháng 12 2016

A=75(4^2004+4^2003+...+4^24+1)+25= 75(4^2004+4^2003+...+4^24)+75+25= 
=75(4^2004+4^2003+...+4^24)+100= 75*4(4^2003+4^2002...+4^23)+100= 
= 300(4^2003+4^2002...+4^23)+100= 100[3(4^2003+4^2002...+4^23)+1] chia het cho 100.