Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy 112009có cs tận cùng là 1
112008 ; 112007 ; ....;112000 cũng như vậy
\(\Rightarrow11^{2009}+11^{2008}+....+11^{2000}\)
\(\Rightarrow\overline{.....1}+\overline{....1}+......+\overline{........1}\)
mà dãy số trên có 10 số
\(\Rightarrow A=\overline{.......1}\times10\)
\(\Rightarrow A=\overline{.......10}⋮5\)
Vậy \(A⋮5\)
cái này t chỉ biết là dùng đồng dư thôi nhưng lớp 6 chắc chưa học
\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
Xét hiệu:
\(\frac{2009^{2007}+1}{2009^{2008}+1}-\frac{2009^{2008}-1}{2009^{2009}-1}\)
\(=\frac{\left(2009^{2007}+1\right)\cdot\left(2009^{2009}-1\right)-\left(2009^{2008}+1\right)\cdot\left(2009^{2008}-1\right)}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}\)
\(=\frac{\left(2009^{2016}+2009^{2009}-2009^{2007}-1\right)-\left(2009^{2016}-1\right)}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}\)
\(=\frac{2009^{2009}-2009^{2007}}{\left(2009^{2008}+1\right)\cdot\left(2009^{2009}-1\right)}>0\)
\(\Rightarrow\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\left(đpcm\right)\)
a)\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}+\frac{3}{5}\right)\left(2x+\frac{3}{5}-\frac{3}{5}\right)=0\)
\(\Leftrightarrow\left(2x+\frac{6}{5}\right).2x=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{3}{5}\\x=0\end{matrix}\right.\)
Kết luận thôi
b) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{19}=0\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{19}:3\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{57}\)
\(\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{57}}\)
\(\Leftrightarrow3x=\sqrt[3]{-\frac{1}{57}}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{\sqrt[3]{-\frac{1}{57}}+\frac{1}{2}}{3}\)
Số hơi to
Kết luận thôi
Vì M là trung điểm của đoạn AB nên AB = 2.MB
M2 là trung điểm của đoạn MB nên MB = 2.M2B
M3 là trung điểm của đoạn M2B nên M2B = 2.M3B
...
M2008 là trung điểm của đoạn M2007B nên M2007B = 2.M2008B
=> AB = 2.2.2.2....2.M2008B
2008 thừa số 2
=> AB = 22008.M2008B = 22008
=> M2008B = 1 (cm)
Nếu \(\frac{7n^2+1}{6}\) là số tự nhiên với n thuộc N thì n/2(*) và n/3(**) là phân số tối giải:
Ta có:\(\frac{7n^2+1}{6}=\) \(\frac{6n^2+n^2+1}{6}=n^2+\frac{n^2+1}{6}\) \(\Rightarrow\left(n^2+1\right)⋮6\)
=> n2 phải là số lẻ=> n phải là số lẻ => không chia hết cho 2=> (*) được c/m.
g/s: n chia hết cho 3 => n=3k
{với k phải lẻ, nếu k chẵn => n chẵn=>k=2t+1=> n=3(2k+1)=6t+3}
=>\(\frac{n^2+1}{6}=\frac{\left(6t+3\right)^2+1}{6}=\frac{36t^2+36t+9+1}{6}=6t^2+6t+\frac{10}{6}\left(1\right)\)
(1) không nguyên với mọi t => điều g/s là sai=> (**) được c/m
Ta áp dụng công thức: Nếu đem nhốt n+1 con thỏ vào n loongfthif sẽ có ít nhất 1 cái lồng nhốt từ 2 con thỏ trở lên
Áp dụng công thức trên để chứng minh \(n\in N\) cho 17n -1 \(⋮\) 25
Xét 26 con thỏ là 26 số: 17k;17k+1; ...;17k+25
Đem 26 số trên chia cho 25 ta sẽ có 26 số dư từ: 0;1;2;.....;24 (có 25 giá trị)
Nên sẽ có 2 số dư bằng nhau và trong 26 số trên có 2 số đồng dư với nhau khi chia cho 25
\(\Rightarrow\) Hiệu của 2 số đó chia hết cho 25
Hiệu 2 số có dang: 17x - 17y chia hết cho 25 ( x > y )
17y.(17x-y-1) chia hết cho 25
Mà 17y không chia hết cho 25 nên 17x-y chia hết cho 25
Đặt n=x-y nên \(17^n-1⋮25\) (đpcm)
Ta có 0,7(\(19^{5^{2007}}\)+\(2007^{2008^{2009}}\))= \(\frac{7\left(19^{5^{2007}}+2007^{2008^{2009}}\right)}{10}\)
\(19^{5^{2007}}\)= \(19^{\left(............5\right)}\)= (..............9)
\(2007^{2008^{2009}}\)= 20074k= (............1)
=> \(19^{5^{2007}}\)+ \(2007^{2008^{2009}}\)= (............0)
=> 7(\(19^{5^{2007}}\)+ \(2007^{2008^{2009}}\)) = (............0) \(⋮\)10
Vậy 0,7(\(19^{5^{2007}}\)+\(2007^{2008^{2009}}\)) là một số tự nhiên
ai ta