Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}\)
Vậy hai biểu thức trên bằng nhau
Bài 1:
abc chia hết cho 27
⇒100a+10b +c chia hết cho 27
⇒10.(100a+10b+c) chia hết cho 27
⇒1000a+100b+10c chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a =bca chia hết cho 27
(Chúc bạn học tốt)
(n+2005^2006)(n+2006^2005)
Nhận thấy các số có tận cùng = 5 thì nhân cho chính nó cũng có tận cùng = 5 => 20052006 có tận cùng = 5
Các số có tận cùng bằng 6 thì nhân cho chính nó bao nhiên lần cũng có tận cùng bằng 6 => 20062005có tận cùng =6.
ta có n có 2 trường hợp:
TH1: n là số lẻ
Nếu n là lẻ thì n+20052006 là chẵn
n+20062005 là lẻ
mà chẵn x lẻ= chẵn
TH1: (n+20052006)(n+20062005) chia hết cho 2
TH2: n= chẵn
Nếu là chẵn thì n+20052006 là lẻ
n+20062005 là chẵn
mà chẵn x lẻ cũng = chẵn
TH2: (n+20052006)x(n+20062005) chia hết cho 2.
Ta thấy trong mọi trường hợp (n+2005^2006)(n+2006^2005) đều chia hết cho 2 ĐPCM
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức trên, ta có:
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow\)\(\frac{1}{5x+6}=1-\frac{2005}{2006}=\frac{1}{2006}\)
\(\Rightarrow\)\(5x+6=2006\Rightarrow x=400\)
chắc chắn, ủng hộ mink nha
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2005}{2006}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\frac{1}{5x+6}=1-\frac{2005}{2006}\)
\(\frac{1}{5x+6}=\frac{1}{2006}\)
\(\Rightarrow5x+6=2006\)
\(5x=2006-6\)
\(5x=2000\)
\(x=2000:5\)
\(x=400\)
\(N=\frac{2004+2005}{2005+2006}=\frac{2004}{2005+2006}+\frac{2005}{2005+2006}\)
\(\text{Vì }\frac{2004}{2005}>\frac{2004}{2005+2006};\frac{2005}{2006}>\frac{2005}{2005+2006}\text{nên:}\)
\(\frac{2004}{2005}+\frac{2005}{2006}>\frac{2004}{2005+2006}+\frac{2005}{2005+2006}\)
Vậy M>N