Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu lam di cau nao kho thi hoi hoi vay ko ai tra loi cho dau
cau e)
\(A=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)(suy ra A>=0)
\(A^2=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
\(A^2=1\)
A=1
(bai toan co nhieu cach)
cau m)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)
\(=1\)
cau G)
\(=\frac{5\sqrt{7}}{\sqrt{35}}-\frac{7\sqrt{5}}{\sqrt{35}}+\frac{2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{5}{\sqrt{5}}-\frac{7}{\sqrt{7}}+2\sqrt{2}\)
\(=\sqrt{5}-\sqrt{7}+2\sqrt{2}\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
=\(\frac{\left(\sqrt{15}-\sqrt{5}\right)\cdot\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)}+\frac{\left(5-2\sqrt{5}\right)\cdot\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\cdot\left(2\sqrt{5}+4\right)}\)
=\(\frac{2\sqrt{5}}{2}+\frac{2\sqrt{5}}{4}\)
=\(\sqrt{5}+\frac{\sqrt{5}}{2}\)
=\(\frac{3\sqrt{5}}{2}\)
2/\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
=\(\frac{\left(\sqrt{15}-\sqrt{12}\right)\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\cdot\left(\sqrt{5}+2\right)}+\frac{\left(6+2\sqrt{6}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+2\right)\cdot\left(\sqrt{3}-2\right)}\)
=\(\frac{\sqrt{3}}{1}+\frac{2\sqrt{3}}{1}\)
=\(3\sqrt{3}\)
3/\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
=\(\frac{\sqrt{3}\cdot\left(3+2\sqrt{3}\right)}{3}+\frac{\left(2+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\cdot\left(\sqrt{2}-1\right)}-\left(2+\sqrt{3}\right)\)
=\(\frac{6+3\sqrt{3}}{3}+\sqrt{2}-\left(2-\sqrt{3}\right)\)
=\(\frac{3\cdot\left(2+\sqrt{3}\right)}{3}+\sqrt{2}-\left(2+\sqrt{3}\right)\)
=\(2+\sqrt{3}+\sqrt{2}-2-\sqrt{3}\)
=\(\sqrt{2}\)
Câu số 4 bạn có chắc là đúng đề bài không ạ ? Xem lại đề giúp mình nhé, cảm ơn bạn ^^
ai giúp mk vs
\(VT=\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right).\left(15+2\sqrt{6}\right)=201\)
\(=\left(\frac{5+2\sqrt{6}}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}+\frac{2\left(5-2\sqrt{6}\right)}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}\right).\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)\)
\(=15^2-\left(2\sqrt{6}\right)^2=201=VP\) (đpcm)