\(\left(a^2+b^2+c^2\right)\left[\left(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2023

Để chứng minh bất đẳng thức (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2, ta sẽ sử dụng phương pháp chứng minh bất đẳng thức bằng phương pháp chứng minh định lý hình học.

Giả sử a, b, c là các số thực và (a, b, c) không phải là (0, 0, 0). Ta có thể viết lại bất đẳng thức trên dưới dạng:

(a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] - 9/2 ≥ 0

Mở rộng và rút gọn biểu thức ta có:

2a^4 + 2b^4 + 2c^4 + 4a^2b^2 + 4b^2c^2 + 4c^2a^2 - 2a^3b - 2ab^3 - 2b^3c - 2bc^3 - 2c^3a - 2ca^3 - 9/2 ≥ 0

Đặt x = a^2, y = b^2, z = c^2, ta có:

2x^2 + 2y^2 + 2z^2 + 4xy + 4yz + 4zx - 2x^(3/2)√y - 2x√y^(3/2) - 2y^(3/2)√z - 2yz^(3/2) - 2z^(3/2)√x - 2zx^(3/2) - 9/2 ≥ 0

Đặt t = √x, u = √y, v = √z, ta có:

2t^4 + 2u^4 + 2v^4 + 4t^2u^2 + 4u^2v^2 + 4v^2t^2 - 2t^3u - 2tu^3 - 2u^3v - 2uv^3 - 2v^3t - 2vt^3 - 9/2 ≥ 0

Nhận thấy rằng biểu thức trên có thể viết dưới dạng tổng của các bình phương:

(t^2 + u^2 + v^2 - tu - uv - vt)^2 + (t^2 - u^2)^2 + (u^2 - v^2)^2 + (v^2 - t^2)^2 ≥ 0

Vì mọi số thực bình phương đều không âm, nên bất đẳng thức trên luôn đúng. Từ đó, ta có chứng minh rằng (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2.

14 tháng 5 2017

\(A=\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}\)

\(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

..................................

\(A=\dfrac{a^2+b^2-2ab}{ab}+\dfrac{b^2-2ab+c^2}{bc}+c^2+a^2-\dfrac{2ca}{ca}\)

\(A=\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}-2\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}-2\right)=\dfrac{\left(b+c\right)}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}-6\)

\(A=\left[\dfrac{\left(b+c\right)}{a}+1\right]+\left[\dfrac{\left(a+c\right)}{b}+1\right]+\left[\dfrac{\left(a+b\right)}{c}+1\right]-9\)

\(A=\dfrac{\left(a+b+c\right)}{a}+\dfrac{\left(a+b+c\right)}{b}+\left[\dfrac{\left(a+b+c\right)}{c}\right]-9\)

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-9\)

Ket luan

\(A\ne B\) => đề sai--> hoặc mình công trừ sai

16 tháng 5 2017

bạn đúng bạn đúng là mình chép sai à cảm ơn nhiều

23 tháng 12 2018

1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

17 tháng 7 2017

Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)

\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)

\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)

\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được

\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có:

\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng theo vế (1);(2);(3) ta có ĐPCM

CHÚC BẠN HỌC TỐT.........

29 tháng 12 2018

a.

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)

Suy ra (*) đúng => đpcm

Dấu "=" xảy ra khi a = b

29 tháng 12 2018

b.

\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)

\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)

\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)

Theo câu a. thì điều này đúng

Dấu "=" khi a=b=c

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng