K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

1 tháng 3 2019

giả sử n^2+2008 là 1 số chính phương

suy ra n^2+2008=a^2(a>0)

a^2-n^2=2008

(a-n)(a+n)=2008

thấy a+n>a-n

suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)

thay vào tìm đc n

nhưng n không là stn

nên n^2+2008 ko là số chính phương vơi n là stn

1 tháng 3 2019

 Đặt   \(n^2+2018=m^2\)

Ta có một  số chính phương chia cho 4 dư 0 hoặc 1

\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)

xét số dư của \(m^2-n^2\)cho 4

ta có bảng 

\(m^2\)             0       1     1    0

\(n^2\)              0         1     0     1

\(m^2-n^2\) 0         0      1     -1

mà \(2018\equiv2\left(mod4\right)\)

mà một số cp chia co 4 dư o hoặc 1

vậy o  tìm đc số thoả mãn

 T I C  K nha!

8 tháng 5 2016

C1 ta có 3x^2 + 7y^2 = 2002 

<=> 3x^2=2002-7y^2 

<=> 3x^2=7(286-y^2) 

mặt khác (3;7)=1(nguyên tố cùng nhau) => x chia hết cho 7 <=> x^2 chia hết cho 7 

từ đó suy ra (286-y^2) chia hết cho 7 

<=> [287-(y^2+1) ] chia hết cho 7 

<=> y^2+1 chia hết cho 7 

giã sử y=7k +r (với 0<=r<=6 

=>y^2+1=(7k+r)^2+1=7(7k^2+2kr)+r^2 +1 

thử lại ta thấy với r =0;1;2;3;4;5;6 thì r^2 +1 o chia hết cho 7 => y^2+1 o chia hết cho 7 

=>đpcm
 

8 tháng 5 2016

cách 2 
giữ 3x^3+7y^2=2002 (1) 

có nghiệm nguyên x,y 

từ (1) => x^2 chia hết cho 7 => x chia hết cho 7 => x => x^2=49 

=> x^2 có dạng 49t^2 (t thuộc Z) 

thay x^2=49t^2 vào (1) 

và nhận thấy y^2>=1 

=> 147t^2 <=1995 

=> t^2<=13 

-> t^2 = 1,4,9 

với t^2=1 ...=> x^2 =49 => y^2 =279,y#z 

t^2 =4 =>x^2=196 => y^2=258 (y#Z) 

t^=9 => x^2 =441 -> y^2 =223)(y#Z) 

đpcm

20 tháng 2 2023

Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)

A = 2018 + ( 2k+ 1+ 1)2 

A = 2018 + (2k+2)2

A = 2018 + 4.( k+1)2 ⇒ A  ⋮ 2 Nếu A là số chính phương 

⇒ A ⋮ 4 ( tính chất 1 số chính phương ) 

⇒ 2018 ⋮ 4 ( vô lý)

Nếu n là số chẵn  n =2k ( k \(\in\) N)

A = 2018 + ( 2k + 1)2

2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)

A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.

Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương 

 

Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) =  a + n - a +n = 2n ( chia hết cho 2 )

\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ 
Vậy ta kết luận:  2018 + n^2 không là số chính phương

4 tháng 3 2020

\(3x^2+3x=3x\left(x+1\right)⋮2\)

\(6y^2-2z^2⋮2\Rightarrow6y^2-2z^2+3\) không chia hết cho 2

Do VT chia hết cho 2 mà VP không chia hết cho 2 ( vô lý )

Vậy khôn tồn tại x,y,z nguyên dương thỏa mãn