\(x^2-2-2y^2=2011\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sao có a ở trong đề nx z?

10 tháng 3 2020

à sai đề :  \(2a\Rightarrow2x\)

2 tháng 5 2020

Rõ ràng cặp (x;y) =(t;0) với t \(\inℤ\)là một nghiệm của phương trình

Xét trường hợp y\(\ne\)0, khi đó ta viết được phương trình dưới dạng 

\(2y^2+\left(x^2-3x\right)y+\left(3x^2+x\right)=0\)(1)

Xem đây là phương trình bậc hai ẩn y. Biệt thức \(\Delta\)của nó bằng

\(\left(x^2-3x\right)^2-8\left(3x^2+x\right)=\left(x^2-8x\right)\left(x+1\right)^2\)

Đến đây phương trình (1) có nghiệm y nguyên điều kiện cần là \(\Delta\)phải là số thích phương. Từ đây ta có các TH sau
TH1: x=-1 thay vào (1) ta tính được y=-1

TH2: x\(\ne\)-1, x2-8x=a2(a\(\in\)N) Lúc này ta có: (x-4)2-a2=16 hay [|x-4|-a][|x-4|+a]=16

Dễ dàng tìm được x=0 (tương ứng ới y=0, loại), x=8 (tương ứng với y=-10) và x=9 (tương ứng y=-6 hoặc y=-21)

Vậy tập nghiệm phương trình đã cho là: S={(t;0);(8;-10);(9;-6);(-1;-1)} (t\(\in\)Z)