Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử tồn tại x,y trái dấu thỏa mãn
Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)
=> (x+y)2=xy
Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0
Còn xy nhỏ hơn 0 vì x,y trái dấu
Vậy ko có x,y trái dấu thỏa mãn đề bài
1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

Ta dùng phương pháp phản chứng :
giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )
Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

ta dùng pháp phản chứng
giả sử tồn tại 2 số hữu tỉ x và y trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy
điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)
vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài

Giả sử tồn tại các số tự nhiên x,y,z thỏa mãn đề bài.
Ta có tính chất sau: với các số nguyên a,b,c bất kì, thì hai tổng a+b+c và |a|+|b|+|c| luôn có cùng tính chẵn lẻ.
Do đó, \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn có cùng tính chẵn lẻ với \(x-3y+y-5z+z-7x\)
Mà \(x-3y+y-5z+z-7x=-6x-2y-4z=2.\left(-3x-y-2z\right)\) luôn chẵn với mọi số tự nhiên x,y,z
=>\(\) \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn chẵn
Theo giả thiết:
\(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|=9^{x}+11^{y}+13^{z}\)
Do vế trái chẵn theo chứng minh trên, ta suy ra \(9^{x}+11^{y}+13^{z}\) cũng là số chẵn (1).
Mà 9, 11, 13 là các số tự nhiên lẻ, nên \(9^{x};11^{y};13^{z}\) cũng là các số tự nhiên lẻ
=>\(9^{x}+11^{y}+13^{z}\) có kết quả là 1 số lẻ (mâu thuẫn với (1))
Vậy điều giả sử là sai, hay ko tồn tại các số tự nhiên x,y,z thỏa mãn yêu cầu
Đề bài:
Tồn tại hay không các số tự nhiên \(x , y , z\) sao cho
\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)
Phân tích:
- \(x , y , z \in \mathbb{N}\) (số tự nhiên, tức là \(0 , 1 , 2 , 3 , \ldots\)).
- Vế trái là tổng các giá trị tuyệt đối, mỗi giá trị tuyệt đối có giá trị không âm và tương đối nhỏ nếu \(x , y , z\) nhỏ.
- Vế phải là tổng các số mũ với cơ số lớn (9, 11, 13) và lũy thừa theo \(x , y , z\), sẽ tăng rất nhanh khi \(x , y , z\)tăng.
Bước 1: So sánh quy mô 2 vế
- Vế trái:
\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid \leq \mid x \mid + 3 \mid y \mid + \mid y \mid + 5 \mid z \mid + \mid z \mid + 7 \mid x \mid = 8 \mid x \mid + 4 \mid y \mid + 6 \mid z \mid\)
Tức là vế trái lớn nhất cũng chỉ là một số bậc nhất theo \(x , y , z\).
- Vế phải:
\(9^{x} + 11^{y} + 13^{z}\)
Là hàm số mũ tăng cực nhanh khi \(x , y , z\) tăng.
Bước 2: Kiểm tra trường hợp nhỏ
Thử với \(x = y = z = 0\):
\(\mid 0 - 0 \mid + \mid 0 - 0 \mid + \mid 0 - 0 \mid = 0\)\(9^{0} + 11^{0} + 13^{0} = 1 + 1 + 1 = 3\)
Không thỏa.
Thử \(x = y = z = 1\):
\(\mid 1 - 3 \mid + \mid 1 - 5 \mid + \mid 1 - 7 \mid = 2 + 4 + 6 = 12\)\(9^{1} + 11^{1} + 13^{1} = 9 + 11 + 13 = 33\)
Không thỏa.
Thử \(x = y = z = 2\):
Vế trái:
\(\mid 2 - 6 \mid + \mid 2 - 10 \mid + \mid 2 - 14 \mid = 4 + 8 + 12 = 24\)
Vế phải:
\(9^{2} + 11^{2} + 13^{2} = 81 + 121 + 169 = 371\)
Không thỏa.
Bước 3: Nhận xét
- Vế phải tăng nhanh hơn vế trái rất nhiều.
- Vì vế trái là hàm tuyến tính (hoặc độ lớn nhất bậc 1), còn vế phải là hàm mũ, nên với \(x , y , z\) lớn, vế phải rất lớn và vế trái rất nhỏ so với vế phải.
Bước 4: Trường hợp vế phải nhỏ nhất
Để vế phải nhỏ nhất, cần \(x = y = z = 0\) (hoặc giá trị nhỏ nhất). Với các giá trị nhỏ đã thử thì không thỏa.
Kết luận:
Không tồn tại các số tự nhiên \(x , y , z\) để
\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)

Bài 1 : Nhân vế cả ba đẳng thức ta có :
xy.yz.zx = 3.2.54
=> (x)2.(y)2.(z)2 = 324
=> (x.y.z)2= 182=(-18)2
Nếu xyz = 18 cùng với xy = 3 nên z = 6,cùng với yz = 2 thì x = 9 , cùng với zx = 54 thì y = 1/3.
Tương tự nếu xyz = -18 cùng với xy = 3 nên z = -6,cùng với yz = 2 thì x = -9 , cùng với zx = 54 thì y = -1/3.
Bài 2 :
Do 1/2x + 3 >= 0
2,5 - 3y >= 0
=> |1/2x + 3| + |2,5-3y| = 0
Do đó x = -6 , y = 7/6
Sửa lại đề :\(x^2+y^2+z^2+x+3y+5z+7=0\)
T nghĩ đề nên là số 9 sẽ hợp lí hơn
\(x^2+y^2+z^2+x+3y+5z+9=0\)
\(\Rightarrow\left(x^2+x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\left(z^2+5z+\dfrac{25}{4}\right)+\dfrac{1}{4}=0\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\left(z+\dfrac{5}{2}\right)^2=-\dfrac{1}{4}\Leftrightarrow pt\) vô nghiệm