Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Từ \(a-b=2\left(a+b\right)\Rightarrow a-b=2a+2b\Rightarrow a-2a=2b+b\Rightarrow-a=3b\Rightarrow a=-3b\)
\(\Rightarrow\frac{a}{b}=\frac{-3b}{b}=-3\)
\(\Rightarrow\hept{\begin{cases}a-b=-3\\2\left(a+b\right)=-3\end{cases}\Rightarrow\hept{\begin{cases}a-b=-3\\a+b=-\frac{3}{2}\end{cases}}}\)
\(\Rightarrow a-b+a+b=-3-\frac{3}{2}\Rightarrow2a=\frac{-9}{2}\Rightarrow a=\frac{-9}{4}\)
Có: \(a-b=-3\Rightarrow b=a+3\Rightarrow b=\frac{-9}{4}+3=\frac{3}{4}\)
Vậy a=-9/4,b=3/4
2/ Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
Ta có: \(\frac{bx-ay}{a}=\frac{bak-abk}{a}=0\left(1\right)\)
\(\frac{cx-az}{y}=\frac{cak-ack}{y}=0\left(2\right)\)
\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\left(3\right)\)
Từ (1),(2),(3) => đpcm
Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.
Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$
$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)
Điều này vô lý do $y$ là số vô tỉ.
$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.
Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.
-------------------------------
Chứng minh $xy$ vô tỉ.
Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$
$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.
-------------------------------
CM $\frac{x}{y}$ vô tỉ.
Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$
$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.
Bài làm
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x-y}{7-13}=\frac{42}{-6}=-7\)
Do đó:
\(\hept{\begin{cases}\frac{x}{7}=-y\\\frac{y}{13}=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-49\\y=-91\end{cases}}\)
Vậy x = -49; y = -91
Đặt \(\frac{x}{7}=\frac{y}{13}=k\)
=> x = 7k,y = 13k
=> x - y = 7k - 13k
=> x - y = -6k
=> 42 = -6k
=> k = -7
Vậy x = 7.(-7) = -49 , y = 13.(-7) = -91