K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải thích các bước giải:

 Giả sử chúng ta chia được một tập `S=n,n+1,…n+17` của `18` số nguyên dương liên tiếp thành tập `A, B` sao cho ∏n∈Aa=∏n∈Bb và tách của các phần tử trong A bằng tích của các phần tử trong B, nếu 1 tập chứa bội số của 19 thì tập còn lại cũng như thế.

Do vậy, S không chứa bội số nào của 19 hoặc chứa ít nhất hai bội số của 19. Vì có duy nhất 1 trong 18 số nguyên dương liên tiếp có thể là bội của 19, S phải không chứa bội số nào. Bởi vậy `n,n+1,…n+17` lần lượt đồng dư `1,2,3,…,18\ mod\ 19` (chia lấy dư). Do vậy, theo quy tắc Wilson:

∏n∈Aa×∏n∈Bb=n(n+1)+…(n+17)=18!=−1 (mod 19)

Tuy nhiên hai tích của bên trái bằng nhau, điều này không có khả năng vì `-1` không là bình phương của phép mod 19. Bởi vậy, không tồn tại hai tập A và B

Hok tốt!!!!!!!!

14 tháng 3 2021

xin lỗi nha mình chịu

14 tháng 3 2021

Giả sử A = {a, b} với a, b là hai số tự nhiên khác nhau từ 1 đến 15.

Ta có \(\left(1+2+...+15\right)-\left(a+b\right)=ab\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=121\).

Do a, b > 0 nên a = b = 10 (vô lí).

Vậy....

21 tháng 11 2018

Đáp án C

Ta tìm số cặp số (a;b) thoả mãn

Có 49 cặp (a;b) thỏa mãn. Do đó S gồm 49 phần tử:

Ta tìm số cặp (a;b) thoả mãn

Do đó

 Vậy có 4 cặp số (a;b)có tổng bằng 100 và tích của chúng là một số chính phương.

NV
14 tháng 4 2020

Số tập con 4 phần tử bằng 20 lần số tập con 2 phần tử

\(\Rightarrow C_n^4=20C_n^2\) \(\Rightarrow n=18\)

Số tập con gồm k phần tử: \(C_{18}^k\)

Để số tập con gồm k phần tử đạt max:

\(\Leftrightarrow\left\{{}\begin{matrix}C_{18}^k\ge C_{18}^{k+1}\\C_{18}^k\ge C_{18}^{k-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{18!}{\left(18-k\right)!.k!}\ge\frac{18!}{\left(17-k\right)!\left(k+1\right)!}\\\frac{18!}{\left(18-k\right)!k!}\ge\frac{18!}{\left(19-k\right)!\left(k-1\right)!}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+1\ge18-k\\19-k\ge k\end{matrix}\right.\) \(\Rightarrow k=9\)

9 tháng 2 2017

1,Cho tập X có n phần tử trong đó có 2 phần tử a và b.Tính số các hoán vị của tập X sao cho a và b không đứng cạnh nhau?2,Cho tập X=\(\left\{1;2;3;.....2n\right\}\).Hỏi có bao nhiêu hoán vị của tập X mà các phần tử chẵn sẽ đứng ở vị trí chẵn?3,Có tất cả bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau được thành lập từ các chữ số 1;2;3;4;5?4,Gọi A là tập hợp tất cả các số tự nhiên có...
Đọc tiếp

1,Cho tập X có n phần tử trong đó có 2 phần tử a và b.Tính số các hoán vị của tập X sao cho a và b không đứng cạnh nhau?

2,Cho tập X=\(\left\{1;2;3;.....2n\right\}\).Hỏi có bao nhiêu hoán vị của tập X mà các phần tử chẵn sẽ đứng ở vị trí chẵn?

3,Có tất cả bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau được thành lập từ các chữ số 1;2;3;4;5?

4,Gọi A là tập hợp tất cả các số tự nhiên có 7 chữ số đôi một khác nhau được tạo ra từ các chữ số 0;1;2;3;4;5;6.Hỏi có bao nhiêu số thuộc A mà trong số đó có chữ số 1 và cho số 2 đứng cạnh nhau ?

5,Từ 5 học sinh không có bạn nào trùng nhau trong đó có bạn Hoa và Hồng.Hỏi có bao nhiêu cách sắp xếp 5 bạn đó vào 1 bàn dài 5 chỗ sao cho:

a,Số cách xếp là tùy ý.

b,Hoa và Hồng ngồi cạnh nhau.

c,Hoa và Hồng không ngồi cạnh nhau.

d,Hoa và Hồng ngồi cạnh nhau 1 đứa bạn.

e,Hoa và Hồng ở hai đầu bàn.

0
24 tháng 4 2016

Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)

\(C_{18}^k\left(k=1,.....,18\right)\)

Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :

\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)

\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)

\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)

\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)

\(\Leftrightarrow17>2k\)

\(\Leftrightarrow k< \frac{17}{2}\)

Điều kiện (*) nên k = 1,2,3,.....8

Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17

Vậy ta có 

\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)

Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.