K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Chứng minh rằng không thể biểu diễn số 11 thành tổng các nghịch đảo của bình phương của kk số tự nhiên khác nhau từng đôi một (k∈N,k⩾2k∈N,k⩾2)

GIẢI :

Xét 2 trường hợp :

+ Nếu trong k số tự nhiên đó có số 1 thì dĩ nhiên tổng đó lớn hơn 11^2=1

+ Nếu trong k số tự nhiên đó không có số 1 :

[tex]\frac{1}{n^2}< \frac{1}{(n-1).n}[/tex]

[tex]\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1[/tex]

   Vậy dù tổng ở vế trái có bao nhiêu số hạng thì nó vẫn nhỏ hơn 11.

Trong cả 2rường hợp, tổng các nghịch đảo của bình phương của k số tự nhiên khác nhau từng đôi một luôn luôn khác 1 (lớn hơn hoặc nhỏ hơn 1) ⇒⇒đpcm.

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

2 tháng 9 2017

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm

3 tháng 12 2019

a)A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2017+3^2018+3^2019)

A=(3+3^2+3^3)+3^3x(3+3^2+3^3)+...+3^2016x(3+3^2+3^3) suy ra A chia hết cho (3+3^2+3^3)

Mà (3+3^2+3^3)=39;39 chia hết cho 13 nên A chia hết cho 13