Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1=0
=(x-1)^2+(2y-2)^2+(z-3)^2+1=0
Vì (x-1)^2> với mọi x
(2y-2)^2>0 với mọi y
(z-3)^2>0 với mọi z
=>(x-1)^2+(2y-2)^2+(z-3)^2+1>0
=>đẳng thức vô nghiệm
Ta có: x2 + 4y2 + z2 - 2x + 8y - 6z + 15 = 0 (Sửa đề)
=> (x2 - 2x + 1) + 4(y2 + 2x + 1) + (z2 - 6z + 9) + 1 = 0
=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1 = 0
=> ko có giá trị x, y , z thõa mãn (Do (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1\(\ge\)1 \(\forall\)x;y;z)
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1=0\)
Lại có \(\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0;\left(z-3\right)^2\ge0\forall x,y,z\in R\)
\(\Rightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\in R\) (trái với đề bài)
Do đó không tồn tại x,y,z thỏa mãn đẳng thức trên
x2 + 4y2 + z2 - 2x + 8y - 6z + 15
= ( x2 - 2x + 1 ) + ( 4y2 - 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + 4( y2 - 2y + 1 ) + ( z - 3 )2 + 1
= ( x - 1 ) + 4( y - 1 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z
Vậy không tồn tại giá trị x, y, z thỏa mãn đẳng thức x2 + 4y2 + z2 - 2x + 8y - 6z + 15 ( đpcm )
Ta có: \(x^2+4y^2+z^2-2a+8y-6z+15\)
\(=\left(x^2-2a+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(a-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\) (Vì \(\left(a-1\right)^2\ge0;\left(2y+2\right)^2\ge0;\left(z-3\right)^2\ge0\forall x;y;z)\)
Vậy không có giá trị x;y;z thỏa mãn đề bài cho (đpcm)
Ta có \(x^2+4y^2+z^2-2x+8y-6z+15=0\)
<=> \(x^2-2x+1+4y^2+8y+4+z^2-6z+9+1=0\)
<=> \(\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1=0\)
<=> \(\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2=-1\)
Mà \(\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^3\ge0\forall x,y,z\) nên vô lí
Vậy....
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Do vế phải lẻ nên vế trái lẻ
- TH1: Cả 3 số đều lẻ, đặt \(\left(x;y;z\right)=\left(2k+1;2m+1;2n+1\right)\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2k+1\right)^2=2023\)
\(\Leftrightarrow m\left(m+1\right)+n\left(n+1\right)+k\left(k+1\right)=505\)
Mà \(m\left(m+1\right);n\left(n+1\right);k\left(k+1\right)\) đều là tích 2 số nguyên liên tiếp \(\Rightarrow\) vế trái chẵn, trong khi vế phải lẻ \(\Rightarrow\) pt vô nghiệm
- TH2: 2 số chẵn 1 số lẻ, do vai trò 3 số là như nhau nên giả sử x;y chẵn và z lẻ, đặt \(\left(x;y;z\right)=\left(2k;2m;2n+1\right)\)
\(4k^2+4m^2+\left(2n+1\right)^2=2023\)
\(\Leftrightarrow4\left(k^2+m^2+n^2+n\right)=2022\)
Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm
Vậy ko tồn tại x;y;z nguyên thỏa mãn