Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: U2 = U2R + U2L => UR = √U2−U2LU2−UL2 = √(40√2)2−402(402)2−402 = 40 V.
Cường độ dòng điện hiệu dụng: I = URRURR = 40404040 = 1 A.
a) Cảm kháng: ZL = ULIULI = 401401 = 40 Ω
b) Độ lệch pha: tanφ = ZLRZLR = 1 => φ = +Π4+Π4. Tức là i trễ pha hơn u một góc Π4Π4.
Vậy biểu thức tức thời của cường độ dòng điện là: i = √2cos(100πt - Π4Π4) (A).
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Bạn xem lại biểu thức của i đúng chưa nhé, vì mạch này có L và R nên u sớm pha với i.
Mình gợi ý cách làm:
+ Tìm độ lệch pha u đối với i
+ Tính \(\tan\varphi=\frac{Z_L}{R}\) từ đó tìm đc tỉ số R và ZL
L giảm --> ZL giảm
A. Đúng, vì L giảm về ZL = ZC thì cộng hưởng xảy ra thì I tăng lên cực đại rồi sau đó giảm
B. Đúng, tương tự A.
C. UL max khi: \(Z_L=\frac{R^2+Z_c^2}{Z_C}=\frac{30^2+30^3}{30}=60\Omega\), như vậy điện áp hiệu dụng 2 đầu L tăng lên cực đại rồi giảm.
Tuy nhiên, nó chỉ giảm về: \(U_L=\frac{U}{\sqrt{R^2+Z_C^2}}R\) chứ không phải giảm về 0 ---> Câu này sai
D. Đúng, bạn có thể tự kiểm tra.
Mình giải thích rõ hơn công thức của bạn Nguyễn Trung Thành
iOUUUUULRCRC→→→→→→abc
Nhận xét:
+ Khi L thay đổi thì góc b và c không đổi (do R và ZC không đổi).
+ Khi L = L0 để UL max thì a0 + b = 900.
Áp dụng định lí hàm số sin trong tam giác OULUC:
\( \frac{U_L}{\sin(a+b)}=\frac{U}{\sin c}=const\)
\(\Rightarrow\frac{U_L}{\sin(a_1+b)}=\frac{U_L}{\sin(a_2+b)}\Rightarrow \sin(a_1+b)=\sin(a_2+b)\Rightarrow a_1+b=\pi-(a_2+b)\)
\(\Rightarrow a_1+a_2=\pi-2b\) Mà \(a_0+b=\frac{\pi}{2}\Rightarrow 2a_0=\pi-2b\)
\(\Rightarrow a_1+a_2=2a_0\)
Hay: \(\varphi_0=\frac{\varphi_1+\varphi_2}{2}\)
Áp dụng công thức: \(\varphi_0=\frac{\varphi_1+\varphi_2 }{2}\Rightarrow\varphi_0=\frac{0,56+0,98 }{2}=0,77\)
\(\Rightarrow \cos\varphi_0=\cos0,77=0,72\)
Đáp án B.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Áp dụng công thức:
$P_1=\dfrac{U^2}{R_1}\cos ^2\varphi _1$ và $P_2=\dfrac{U^2}{R_2}\cos ^2\varphi _2$
$\Leftrightarrow 60=\dfrac{100^2}{50}\cos ^2\varphi _1\Leftrightarrow \cos ^2\varphi _1=\dfrac{3}{10}$
$\Leftrightarrow \cos ^2\varphi _2=\dfrac{9}{20}$
$\Leftrightarrow P_2=180$
$\dfrac{P_2}{P_1}=3$
OK, ZL mình vừa tính lúc nãy.
Giờ tìm \(\varphi\)
Ta có: \(\tan\varphi=\frac{Z_L-Z_C}{R}=\frac{\frac{4}{\sqrt{3}}R-\sqrt{3}R}{R}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow\varphi=\frac{\pi}{6}\)
Vậy u sớm pha hơn i là \(\frac{\pi}{6}\)
Hay điện áp 2 đầu điện trở lệch pha \(\frac{\pi}{6}\)so với điện áp 2 đầu đoạn mạch.
Khi L1 và L2 mắc nối tiếp thì: U = U1 + U2 = - L1 didtdidt – L2 didtdidt
U = -(L1 + L2)didtdidt = −Ldidt−Ldidt với L = L1 + L2
Suy ra: ZL = Lω = L1ω + L2ω = ZL1ZL1 +