K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì I là trung điểm của AB nên IA=IB=AB/2 và I nằm giữa A và B

=>vecto IA ngược hướng với vecto IB

=>vecto IA+vecto IB=vecto 0

NV
28 tháng 9 2019

Giả sử \(\frac{IA}{AB}=k\Rightarrow\frac{IB}{AB}=1-k\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=-k\overrightarrow{AB}\\\overrightarrow{IB}=\left(1-k\right)\overrightarrow{AB}\end{matrix}\right.\)

\(\Rightarrow IB.\overrightarrow{IA}+IA.\overrightarrow{IB}=\left(1-k\right).AB.\left(-k\right)\overrightarrow{AB}+k.AB.\left(1-k\right)\overrightarrow{AB}\)

\(=\left(k^2-k\right)AB.\overrightarrow{AB}+\left(k-k^2\right)AB.\overrightarrow{AB}\)

\(=\left(k^2-k+k-k^2\right).AB.\overrightarrow{AB}=\overrightarrow{0}\)

30 tháng 3 2017

Câu C: \(\overrightarrow{IA}=-\overrightarrow{IB}\)

5 tháng 9 2021

→IB+→IA−→IC−→CM=→0

=>\(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IM}=\overrightarrow{0}\)

=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{IM}\)

Đặt K là trung điểm AB

=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{2IK}\)(T/c trung tuyến)

=>\(\overrightarrow{2IK}=\overrightarrow{IM}\)

=>K,M,I thẳng hàng

Vậy điểm M thuộc đoạn KI sao cho \(\dfrac{\overrightarrow{IK}}{\overrightarrow{IM}}=\dfrac{1}{2}\)

6 tháng 9 2021

 luv u 

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

Áp dụng các công thức sau: \(|\overrightarrow {a}|^2=\overrightarrow{a}.\overrightarrow{a}\)

\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{0}\) nếu \(\overrightarrow{a}\perp \overrightarrow{b}\)

Ta có:

\(BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{IB}+AB^2.\overrightarrow{IC}\)

\(=BC^2.\overrightarrow{IA}+AC^2.(\overrightarrow{IA}+\overrightarrow{AB})+AB^2.(\overrightarrow{IA}+\overrightarrow{AC})\)

\(=BC^2.\overrightarrow{IA}+\overrightarrow{IA}(AC^2+AB^2)+AC^2.\overrightarrow{AB}+AB^2.\overrightarrow{AC}\)

\(=2BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{AB}+AB^2.\overrightarrow{AC}\)

\(=\overrightarrow{BC}.\overrightarrow{BC}.\overrightarrow{HA}+\overrightarrow{AC}.\overrightarrow{AC}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AB}.\overrightarrow{AC}\)

\(=\overrightarrow {BC}.\overrightarrow{0}+\overrightarrow{AC}.\overrightarrow{0}+\overrightarrow{AB}.\overrightarrow{0}=\overrightarrow {0}\)

12 tháng 11 2018

Công thức \(\left|\overrightarrow{a}\right|^2=\overrightarrow{a}.\overrightarrow{a}\)\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{0}\)nếu \(\overrightarrow{a}\perp\overrightarrow{b}\) chứng minh như nào ạ ?

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.

$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$

$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$

$=2\overrightarrow{IM}$ (đpcm)

b)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)

\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)

\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)

c)

\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)

\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)

17 tháng 8 2020

Lời giải:

a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.

$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$

$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$

$=2\overrightarrow{IM}$ (đpcm)

b)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)

\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)

\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)

c)

\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)

\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)