Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)
b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)
\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)
Với x 1 , x 2 là hai giá trị bất kì của x thuộc R, ta có:
y 1 = f( x 1 ) = 4 - 2/5 x 1 ; y 2 = f( x 2 ) = 4 - 2/5 x 2
Nếu x 1 < x 2 thì x 1 - x 2 < 0. Khi đó ta có:
y 1 - y 2 = (4 - 2/5 x 1 ) - (4 - 2/5 x 2 )
= (-2)/5( x 1 - x 2 ) > 0. Suy ra y 1 > y 2
Vậy hàm số đã cho là hàm nghịch biến trên R.
b: Vì \(a=-\dfrac{5}{9}< 0\) nên hàm số luôn nghịch biến trên R
\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)
Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R
Mà \(2+\sqrt{3}< 3+\sqrt{3}\)
Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)
Gọi x1, x2 là hai giá trị của x (x1>x2)
Ta có: x1>x2\(\Leftrightarrow\)-2x1<-2x2 \(\Leftrightarrow\)f(x1) < f(x2)
Vì x1>x2 mà f(x1) < f(x2) suy ra hàm số nghịch biến trên tập hợp số thực R
cậu xem đúng thì k y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2 sao cho |x2-x1| >1 (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0
mk mới hok lớp 8 nên cái tay bó tay!!! ^^
346456454574575675756768797835153453443457657656565
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-x_1+1+x_2-1}{x_1-x_2}=-1\)
Vậy: f(x) nghịch biến trên R
còn phần so sánh thì sao bạn?