K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

Gọi d \(\in\) ƯC( 2n + 5;n + 2)

\(\text{⇒2n+5−2(n+2)}\) chia hết cho dd

hay 1chia hết cho d

\(\text{⇒d=1}\)

vậy 2n+5 và n+2 nguyên tố cùng nhau

26 tháng 2 2016

Gọi d ∈∈ ƯC( 2n + 5;n + 2)

⇒2n+5−2(n+2)⇒2n+5−2(n+2) chia hết cho dd

hay 1chia hết cho d

⇒d=1⇒d=1

vậy 2n+5 và n+2 nguyên tố cùng nhau

18 tháng 3 2016

k mik CMR rùi mà luwofi viết lắm thông cảm nha!!!leu

18 tháng 3 2016

Gọi ƯCLN(n+3,2n+5) = d

=> n+3 chia hết cho d, 2n+5 chia hết cho d

=> 2(n+3) chia hết cho d, 2n+5 chia hết cho d

=> 2n+6 chia hết cho d,2n+5 chia hết cho d

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d =>đpcm.

26 tháng 2 2016

gọi d\(\in\)ƯC(5n+7;7n+10) thì \(\text{5(7n+10)−7(5n+7)}\) chia hết cho dd 

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow\)d = 1

do đó 7n+10 và 5n+7 nguyên tố cùng nhau

26 tháng 2 2016

gọi d∈∈ƯC(5n+7;7n+10) thì 5(7n+10)−7(5n+7)5(7n+10)−7(5n+7) chia hết cho dd 

⇒⇒1 chia hết cho d

⇒⇒d = 1

do đó 7n+10 và 5n+7 nguyên tố cùng nhau

13 tháng 3 2016

bài 2 :338350

21 tháng 11 2018

Gọi \(d\inƯ\left(n+15;n+72\right)\) ( \(d\in N,d\ne0\))

\(\Rightarrow n+15⋮d\)

\(n+72⋮d\)

\(\Rightarrow\left(n+72\right)-\left(n+15\right)⋮d\)

\(\Rightarrow57⋮d\)

\(\Rightarrow d=1;3;19;57\) để n + 15 và n + 72 là hai số nguyên tố cùng nhau thì n khác dạng 19k + 15

Vậy có vô số giá trị n

15 tháng 11 2019

tại sao n khác dạng 19k+15 vậy

Gọi 2 số tự nhiên liên tiếp là n và n+1 

Gọi d là UCLN (n , n+1 )    [ d thuộc N* ]

Ta có    n :  d              =>  [( n +1 )-n ] : d

             n+1  : d 

=> 1 : d    => d = 1 

UCLN  ( n , n + 1 )  =1

vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau 

tich nha

 

10 tháng 4 2016

  Gọi số thứ nhất là n, số thứ hai là n+1, ƯC﴾n,n+1﴿=a

Ta có: n chia hết cho a﴾1﴿

n+1 chia hết cho a﴾2﴿

Từ ﴾1﴿ và ﴾2﴿ ta được: n+1‐n chia hết cho a

=> 1 chia hết cho a

=> a=1

=> ƯC﴾n,n+1﴿=1

=> n và n+1 là hai số nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau

 

15 tháng 3 2016

Gọi d\(\in\) ÚC(7n+10, 5n+7) thì 5(7n+10) - 7(5n+7) chia hết cho dd

\(\Rightarrow\) 1 chia hết cho d

 \(\Rightarrow\)d=1

   Váy 7n+10 và 5n+7 là hai số nguyên tố cùng nhau

15 tháng 3 2016

Gọi d>0 là ước số chung của 7n+10 và 5n+7

=>d là ước của số 5.(7n+10)= 35n+50

và d là ước của số 7.(5n+7)=35n+49

mà (35n+50)-(35n+49)=1

=> d là ước của số 1=>d=1

Vậy d là ước của 1

17 tháng 3 2016

Gọi số cần tìm là p(p nguyên tố)

Dễ thấy p>2 nên p lẻ

Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ. Số chẵn là 2

Như vậy p=a+2=b-2(a,b nguyên tố)

Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.vậy phải có 1 số bằng 3

+)a=3=>p=5;b=7(thoả mãn)

+)p=3=>a=1( ko là số nguyên tố)

+)b=3=>p=1( ko là số nguyên tố)

Vậy số nguyên tố cần tìm là 5

16 tháng 3 2016

Số đó là số 2 nhé

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số,...
Đọc tiếp

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37

Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?

Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?

Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?

Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2

Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số, tận cùng bằng 6 và chia hết cho 9.

 Câu7: 

      a, Có bao nhiêu số có 2 chữ số chia hết cho 9 ?

      b, Tìm tổng các số có 2 chữ số chia hết cho 9 .

Câu8: chứng minh rằng:

      a, 102002 + 8 chia hết cho cả 9 và 2 .

      b, 102004 + 14 chia hết cho cả 2 và 3 .

Câu9: tìm tập hợp A các số tự nhiên x là ước của 75 và là bội của 3.

Câu10: tìm các số tự nhiên x,y sao cho: ( 2x + 1 ). ( y - 5 ) = 12

Câu11: số ababab là số nguyên tố hay hợp số ?

Câu12: chứng minh rằng số abcabc chia hết ít nhất cho 3 số nguyên tố.

Câu13: chứng minh rằng: 2001 . 2002 . 2003 . 2004 + 1 là hợp số.

Câu14: tướng Trần Hưng Đạo đánh tan 50 vạn quân nguyên năm abcd, biết : a là số tự nhiên nhỏ nhất khác 0 ; b là số nguyên tố nhỏ nhất; c là hợp số chẵn lớn nhất có một chữ số; d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất. Vậy abcd là năm nào ?

Câu15: cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số ? vì sao ?

Câu16: tìm 3 số tự nhiên liên tiếp có tích bằng 19 656.

Câu17: tìm số tụ nhiên n biết rằng: 1 + 2 + 3 +...+ n = 1275

Câu18: tìm số chia và thương của một phép chia, biết số bị chia là 150 và số dư là 7.

Câu19: tìm giao của 2 tập hợp A và B :

      a, A là tập hợp các số tự nhiên chia hết cho 3. B là tập hợp các số tự nhiên chia hết cho 9.

      b, A là tập hợp các số nguyên tố. B là tâp hợp các hợp số.

      c, A là tập hợp các số nguyên tố bé hơn 10. B là tập hợp các chữ số lẻ.

                                                                   --------- Hết---------

                                                           GIÚP VỚI, MAI NỘP RỒI. 

11
15 tháng 2 2016

Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi. 


Ta có: 

xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37 

Lại có: 
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37 

Vậy yzx cũng phải chia hết cho 37 


Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.

18 tháng 2 2016

nhiều có làm sao hết 

8 tháng 9 2017

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.