K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KK
11 tháng 2 2019
Đặt A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)< \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
=> A < 1 + (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/(n - 1) - 1/n)
=> A < 1 + (1 - 1/n)
=> A < 2 - 1/n
15 tháng 8 2017
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
TT
1
2 tháng 8 2015
ta có (n-1)n(n+1)=n(n^2-1)=n^3-n < n^3( cái này bạn tự tính nhé, mình làm tắt)
=> như đề bài
Lời giải:
ĐK: $0< n< 1$
Ta thấy:
$\frac{n+1}{n}-\frac{n+3}{n+1}=\frac{(n+1)(n+1)-n(n+3)}{n(n+1)}$
$=\frac{n^2+2n+1-n^2-3n}{n(n+1)}=\frac{1-n}{n(n+1)}>0$ với mọi $0< n< 1$
Do đó $\frac{n+1}{n}>\frac{n+3}{n+1}$ (đpcm)