Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)(đpcm)
Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\) ( 1 )
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)
\(\Rightarrow ad+cd< bc+cd\) ( 2 )
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)
Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk
a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)
Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)
Từ (1) và (2) suy ra đều phải chứng minh .
b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)
Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)
Từ (3) và (4) suy ra đều phải chứng minh
Gọi a/b = c/d = z/y = k => a = bk ; c = dk ; z = yk.Ta có:
a+c+z / b+d+y = bk + dk + yk / b+d+y = k(b+d+y) / b+d+y = k = a/b = c/d = z/y
Vậy a/b = c/d = z/y = a+c+z / b+d+y (Chú ý : Đây là kiến thức "Tính chất của dãy tỉ số bằng nhau" ở lớp 7)
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow1:\frac{a+b}{b}=1:\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
Bài sau tương tự trừ 1 xong rồi lấy 1 chia cho 2 vế đó là ra
Ủng hộ nha cảm ơn
CHÚC BẠN HỌC TỐT
a, Đặt \(\frac{a}{b}=\frac{c}{d}\)\(=k\)
\(\Rightarrow a=bk\)\(;\)\(c=dk\)
Ta có : \(\frac{b}{a+b}=\frac{b}{bk+b}\)\(=\frac{1}{k+1}\left(1\right)\)
\(\frac{d}{c+d}=\frac{d}{dk+d}\)\(=\frac{1}{k+1}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\)\(\frac{b}{a+b}=\frac{d}{c+d}\)(ĐPCM)
b, Tương tự a \(\Rightarrow\frac{b}{a-b}=\frac{1}{k-1}=\frac{d}{c-d}\)(ĐPCM)
Đặt\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk ;c=dk\)
\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)
\(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)
Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)
Ta có:a/b<c/d<=>a.d<b.c
<=>2018a.d<2018b.c
<=>2018a.d+c.d<2018b.c+d.c
<=>d(2018a+c)<c(2018b+d)
<=>2018a+c/2018b+d<c/d(dpcm)
Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)
\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)
\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)
Có \(\frac{a}{b}=\frac{c}{d}\)=>a.d=b.c (1)
Có \(\frac{a-b}{b}=\frac{c-d}{d}=>\)(a-b).d=(c-d).b
=>a.d-b.d=b.c-b.d (2)
Từ (1)(2)=>\(\frac{a}{b}=\frac{c}{d}=>\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy.....(kết luận)....
Nhớ tic nếu thấy hay và đúng nha
Chúc bạn học tốt