Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)
\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)
\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\text{Giả sử }a< b< c\)
\(\Rightarrow a\le2;b\le3;c\le5\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
Gọi d là ƯCLN(a;b;c) =>d lẻ vì các số a,b,c là các số lẻ (1)
(+) a chia hết cho d
(+) b chia hết cho d
=>a+b chia hết cho d (2)
Mặt khác vì a,b là các số lẻ nên a+b sẽ chia hết cho2 (3)
Từ (1);(2) và (3) =>\(\frac{a+b}{2}\) phải chia hết cho d
C/m tương tự ta có \(\frac{b+c}{2};\frac{c+a}{2}\) cũng chia hết cho d
=>đpcm
Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.
\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)
\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)
Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)
hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)
=>\(\frac{a^2+b^2}{ab}>2\)
=>\(\frac{a}{b}+\frac{b}{a}>2\)
Cách 2: nếu bạn đã học bất đẳng thức cô-si:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)
\(\Leftrightarrow\frac{a}{b}-\frac{a}{c}>0\Leftrightarrow a\left(\frac{1}{b}-\frac{1}{c}\right)>0\)
\(a\left(\frac{c-b}{bc}\right)>0\)(*)
xem lại đề (*) chỉ đúng khi abc>0