\(\frac{a^2+b^2}{2}\ge ab\)     \(\left(a,b\in N\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2015

Ta luôn có: (a-b)2 >= 0 => a2-2ab+b2>=0 =>a2+b2>=2ab => dpcm
 

13 tháng 3 2015

a^2+b^2 >= 2ab

Nên a^2+b^2 - 2ab >= 0

a^2 - ab + b^2 - ab >= 0

a(a-b) - b(a-b) >= 0

(a-b).(a-b) = (a-b)^2 >=0 (Đúng)

Nên (a^2+b^2)/2 >= ab (đpcm)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

6 tháng 4 2017

Sửa đề: chứng minh \(S\ge6\)

Ta có: 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+6\)

\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+6\ge6\)

\(\Rightarrow\)ĐPCM

7 tháng 4 2017

Đây nè k cho mình nha:

Ta có \(\frac{a+b}{c}>\frac{a+b}{a+b+c}\)

         \(\frac{b+c}{a}>\frac{b+c}{a+b+c}\)

         \(\frac{a+c}{b}>\frac{a+c}{a+b+c}\)

Suy ra \(S>\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy S > 2

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

25 tháng 2 2018

a. Ta có

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)

\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)

\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)

Cộng vế với vế của 1;2 ta được

\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)

hay A>B

Làm ơn giúp mk, mk đang cần gấp!!!

11 tháng 12 2022

a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2

Nếu a,b ko cùng tính chẵn lẻ thì 

ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2

Nếu a,b lẻ thì (a+b) chia hết cho 2

=>ab(a+b) chia hết cho 2

b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

15 tháng 3 2018

Từng bài 1 thôi nha bn!!!

a) Xét hiệu: A = 9.(7x+4y) - 2. (13x+18y)

A = 63x + 36y - 26x - 36y

A = 37x \(\Rightarrow A⋮37\) Vì 7x + 4y chia hết cho 37

9.(7x+4y) chia hết cho 37

Mà A chia hết cho 37 

\(2\left(13x+18y\right)⋮37\)

Do 2 và 37 là nguyên tố cùng nhau

13x+18y chia hết cho 37

Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37 

17 tháng 2 2017

100 + 100 + 100

Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho

17 tháng 2 2017

trần khánh lâm ! = 300

kick mk nhé !

14 tháng 3 2017

Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.

\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)

\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)

Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)

hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)

=>\(\frac{a^2+b^2}{ab}>2\)

=>\(\frac{a}{b}+\frac{b}{a}>2\)

Cách 2: nếu bạn đã học bất đẳng thức cô-si:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)