Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sud kênh Mik ủng hộ với tên kênh là M.ichibi
kênh làm về MINECRAFT
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
tự tính

A=1/1.2+1/12+...+1/99.100
A=7/12+...1/99.100
Suy ra A>7/12 (1)
A=1-1/2+1/3-1/4+...+1/99-1/100
A=(1/2+1/3)-(1/4-...+1/100)
A=5/6-(1/4-...+1/100)
suy ra A<5/6 (2)
Vậy 7/12<A<5/6
chắc chắn đúng
Lê Tùng lâm bài của bạn chưa đúng vì
A = \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
Chứ không phải là: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\Rightarrow C>\frac{1}{2}\)
Ta có : \(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(C< \frac{1}{2}\)

C=1/1x2 + 1/2x3 + 1/3x4 + ... + 1/99x100
=(1 -1/2) +(1/2 -1/3) +(1/3 - 1/4) +......+(1/99 - 1/100)
(gạch bỏ -1/2 và 1/2 ; -1/3 và 1/3 ; .........-1/99 và 1/99)
=1-1/100
=99/100
Ta có:
1/2=50/100
vì 99/100>50/100
nên C>1/2
C = 1/2.3 + 1/ 3.4 + 1/4.5 + ... + 1/99.100
= (1/2-1/3) + (1/3-1/4) + (1/4-1/5) + ... + (1/99-1/100)
= 1/2-1/100
= 49/100
so sánh 49/100 với 1/2
49/100 với 50/100
=) 49/100 < 1/2 (vì 49/100 < 50/100)
chúc bn học tốt

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

Dưới tử mik tính ra thôi. VD: 12 . 22 = 1.4; 22.32 = 4.9 các tử sau tương tự
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{100-81}{81.100}\)
= \(\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+\frac{16}{9.16}-\frac{9}{9.16}\)+.....+\(\frac{100}{81.100}-\frac{81}{81.100}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
.........................................................