\(\frac{1}{\sqrt{101}}+\frac{1}{\sqrt{102}}+\frac{1}{\sqrt{103}}+...+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

Áp dụng 

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}<\frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

có phải không?

25 tháng 12 2015

trời ơi mk mà lm đc chắc đi thi hsg thế giới mất !!!

6 tháng 3 2021
Xét biểu thức phụ : 1 (2n+3)√2n+1+(2n+1)√2n+3 = 1 √2n+1.√2n+3(√2n+1+√2n+3) = √2n+3−√2n+1 √2n+1.√2n+3[(2n+3)−(2n+1)] = √2n+3−√2n+1 2√2n+1.√2n+3 = 1 2 ( 1 √2n+1 − 1 √2n+3 )với n≥1 Áp dụng : S= 1 3√1+1√3 + 1 3√5+5√3 + 1 5√7+7√5 +...+ 1 101√103+103√101 = 1 2 ( 1 √1 − 1 √3 )+ 1 2 ( 1 √3 − 1 √5 )+ 1 2 ( 1 √5 − 1 √7 )+...+ 1 2 ( 1 √101 − 1 √103 ) = 1 2 (1− 1 √3 + 1 √3 − 1 √5 + 1 √5 − 1 √7 +...+ 1 √101 − 1 √103 ) = 1 2 (1− 1 √103 )
27 tháng 8 2018

Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!

Áp dụng vào, ta được:   \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)

                                  \(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)

                                    \(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)

                                           .............................

                                     \(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)

\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)

\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)

\(=2.50=100\)

=> ĐPCM

P/s: sai sót xin bỏ qua cho.

6 tháng 8 2016

Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)

\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)

Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)

7 tháng 8 2016

DM CHƯA HỌC ĐẾN

25 tháng 7 2016

cau a sgk có nhé :))
câu b cm tổng quát là ok

6 tháng 3 2021
Xét biểu thức phụ : 1 (2n+3)√2n+1+(2n+1)√2n+3 = 1 √2n+1.√2n+3(√2n+1+√2n+3) = √2n+3−√2n+1 √2n+1.√2n+3[(2n+3)−(2n+1)] = √2n+3−√2n+1 2√2n+1.√2n+3 = 1 2 ( 1 √2n+1 − 1 √2n+3 )với n≥1 Áp dụng : S= 1 3√1+1√3 + 1 3√5+5√3 + 1 5√7+7√5 +...+ 1 101√103+103√101 = 1 2 ( 1 √1 − 1 √3 )+ 1 2 ( 1 √3 − 1 √5 )+ 1 2 ( 1 √5 − 1 √7 )+...+ 1 2 ( 1 √101 − 1 √103 ) = 1 2 (1− 1 √3 + 1 √3 − 1 √5 + 1 √5 − 1 √7 +...+ 1 √101 − 1 √103 ) = 1 2 (1− 1 √103 )