Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)
gọi d là UCLN của n,(n+1) ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)
=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Ta có đpcm.
\(\frac{1}{n^3}< \frac{1}{\left(n-2\right)n\left(n+1\right)}\Leftrightarrow\frac{\left(n-2\right)n\left(n+1\right)}{n^3}< 1\Leftrightarrow\left(n-2\right)\left(n+1\right)< n^2\)
\(\Leftrightarrow n^2-n-2< n^2\Leftrightarrow-n-2< 0\)Đúng \(\forall n\inℕ\)
--->ĐPCM
ta có (n-1)n(n+1)=n(n^2-1)=n^3-n < n^3( cái này bạn tự tính nhé, mình làm tắt)
=> như đề bài
ta có \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
Vậy \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)