Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
violympic tính điểm sao bang bai toan noi doi k nguong à
chứng minh rằng:\(\frac{1}{5^3}+\frac{1}{6^3}+....+\frac{1}{2016^3}+\frac{1}{2017^3}< \frac{1}{40}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)
3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)
3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)
2B=\(1-\frac{1}{3^{2013}}\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)
\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)
\(3B-B=2B=\)
3B= \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)
B= \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)
2B= 1 + 0 + 0 + 0 +.......+ 0 - \(\frac{1}{3^{2013}}\)
\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)
\(\Rightarrow B< \frac{1}{2}\)
Vậy \(B< \frac{1}{2}\).