Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
Tỉ số giữa 10 quyển và 15 quyển:
10: 15 = 2/3
Nếu chia đều thì mỗi bạn nhận đc:
[15x 2 + 10x3] : [2+3] = 12 [quyển]
Vậy:....................
2,
1/2 + 1/3 + 1/4 + ... + 1/50 = [1 - 1/2] + [1-2/3] + ... + [1 - 49/50]
= 1 - 1/2 + 1 - 2/3 + ... + 1 - 49/50
= [1 + 1 + 1 +... + 1] - [1/2+2/3+3/4+...+49/50]
= 49 - [1/2+2/3+3/4+...+49/50]
Vậy 1/2 + 1/3 + 1/4 + ... + 1/50 không là số tự nhiên
3,
1/42 + 1/52 + ... +1/1002 < 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/99.100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/100
<=> E < 1/3 - 1/100
=> E < 1/3
Mà 1/3 - 1/100 = 97/300 > 1/5
=> 1/5 < E < 1/3
4, A:
2013/1 + 2014/2+2015/3+...+4023/2011+4024/2012 - 2012
= ( 2013/1 - 1)+(2014/2 - 1) + ( 2015/3 - 1)+...+ (4023/2011 - 1) + ( 4024/2012 - 1)
= 2012(1+1/2+1/3+...+ 1/2011+1/2012)
Vậy \(A=\frac{\text{(1+1/2+1/3+...+ 1/2011+1/2012)}}{\text{2012(1+1/2+1/3+...+ 1/2011+1/2012)}}=\frac{1}{2012}\)
Câu B mik sẽ làm sau, bây giờ mik bận
Tỉ số giữa 10 quyển và 15 quyển:
10:15=2/3
Vậy nếu chia cho cả lớp thì mõi bạn nhận được:
(15x2+10x3):5=12 quyển
![](https://rs.olm.vn/images/avt/0.png?1311)
https://olm.vn/hoi-dap/detail/10399296662.html
Bạn có thể xem ở link này(mik gửi vào tin nhắn)
Chúc hok tốt!!!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow\)\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\)\(A< 1+1-\frac{1}{100}\)
\(\Rightarrow\)\(A< 2-\frac{1}{100}< 2\)
\(\Rightarrow\)\(A< 2\) ( đpcm )
Vậy \(A< 2\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Có:\(\frac{1}{2}<\frac{2}{3}\)
\(\frac{3}{4}<\frac{4}{5}\)
\(\frac{5}{6}<\frac{6}{7}\)
..............
\(\frac{2011}{2012}<\frac{2012}{2013}\)=>A<\(\frac{2}{3}.\frac{4}{5}.....\frac{2012}{2013}\)
=> A2<\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{2011}{2012}.\frac{2012}{2013}\)
=> A2<\(\frac{1.2.3.4.....2011.2012}{2.3.4.5.....2012.2013}\)
=>A2<\(\frac{1}{2013}\)=>DPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)
=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(A>\frac{1}{5}-\frac{1}{101}\)
=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)
Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{4}-\frac{1}{100}\)
=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)
\(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2011}{2012}.\frac{2013}{2014}\right)^2\)
\(=\left(\frac{1}{2}\right)^2\left(\frac{3}{4}\right)^2...\left(\frac{2013}{2014}\right)^2\)
\(< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{2013}{2014}.\frac{2014}{2015}=\frac{1}{2015}\)
\(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2011}{2012}.\frac{2013}{2014}\right)^2\)
\(=\left(\frac{1}{2}\right)^2\left(\frac{3}{4}\right)^2...\left(\frac{2013}{2014}\right)^2\)
\(>\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2012}{2013}.\frac{2013}{2014}=\frac{1}{2}.\frac{1}{2014}=\frac{1}{4028}\)
Suy ra đpcm.