\(\frac{12n+1}{30n+2}\)la phan so toi gian ( \(n\in...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

Gọi \(\left(12n+1,30n+2\right)=d\)   \(\left(d\inℕ^∗\right)\)

Vì \(\left(12n+1,30n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\) Tử và mẫu của 2 phân số đó là 2 số nguyên tố cùng nhau nên \(\frac{12n+1}{30n+2}\) tối giản   (đpcm)

21 tháng 5 2020

Gọi d là ƯC(12n + 1 ; 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> ( 60n - 60n ) + ( 5 - 4 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1 ; 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )

10 tháng 7 2017

Gọi \(d=ƯCLN\left(n+3;2n+5\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+3;2n+5\right)=1\)

\(\Leftrightarrow\)Phân số \(\dfrac{n+3}{2n+5}\) tối giản với mọi n

Báo đáp j ế!

10 tháng 7 2017

Gọi \(d\)\(UCLN\left(n+3;2n+5\right)\)

\(\Rightarrow n+3⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)

\(\Rightarrow2n+5⋮d\)

\(\Leftrightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(2n+6-2n-5⋮d\)

\(1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\dfrac{n+3}{2n+5}\) tối giản với mọi \(n\in N\)

21 tháng 3 2019

gọi ƯCLN (16n+3,12n+2) là d

16n+3 chia hết cho d => 48n+9 chia hết cho d 

12n+2 chia hết cho d => 48n + 8 chia hết cho d

=> 48n+9 -  48n + 8  chia hết cho d

=> 1  chia hết cho d

=> d\(\in\){-1;1}

=> \(\frac{16n+3}{12n+2}\)tối giản

21 tháng 3 2019

Để A là phân số tối giãn thì \(16n+3⋮12n+2\)(đặt phân số đó là A nhé)

\(=>16n+3⋮12n+2\)

\(=>48n+9⋮48n+8\)

\(=>48n+9-48n-8⋮48n+8\)

\(=>4⋮12n+2\)

13 tháng 5 2015

Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

Vì (n+1)-n chia hết cho d

=>1 chia hết cho d

=> d=1

Vậy phân số \(\frac{n}{n+1}\)là phân số tối giản

30 tháng 6 2017

a) Gọi \(d=ƯCLN\left(n+4;n+3\right)\) (\(d\in N\)*)

\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N\)*\(;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{n+4}{n+3}\) tối giản với mọi \(n\in N\)

b) Gọi \(d=ƯCLN\left(n-1;n-2\right)\) (\(d\in N\)*)

\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)

\(\Leftrightarrow-3⋮d\)

\(d\in N\)*; \(-3⋮d\Leftrightarrow d=1;3\)

Phân số này ko tối giản nhé bn! xem lại đề ik!

25 tháng 4 2018

Gọi d là ƯCLN (2n+5; n+3)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2\left(n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\left\{\pm1\right\}\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản (đpcm)

25 tháng 4 2018

Giải:

-Gọi ƯCLN(n+3,2n+5)=d

=>n+3 chia hết cho d =>2(n+3)=2n+6 chia hết cho d

=>2n+5 chia hết cho d

=>2n+6-2n+5=1 chia hết cho d

=>d=1.

=>n+3 và 2n+5 là hai số nguyên tố cùng nhau.

=> 2n+5/n+3 là phân số tối giản.

18 tháng 3 2016

3a+4 va2a+3 co ucll = 1 suy ra ps do toi gian

10 tháng 5 2015

bài 2: Các số đó là :

           -2012 , -2011 , -2010 ,  ....., 0, 1 , ..., 2012

                Tổng cá số đó là 0

đúng nhé

2 tháng 1 2017

Gọi UCLN(n+1,2n+3) = d

=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d

     2n + 3 chia hết cho d

=> 2n + 3 - (2n +  2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> UCLN(n+1,2n+3) = 1

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

Gọi UCLN(2n+1,2n+3) = d

=> 2n+1 chia hết cho d

     2n+3 chia hết cho d

=> 2n+3 - (2n+1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\){1;2}

Vì 2n+1 lẻ nên d = 1

=>UCLN(2n+1,2n+3) = 1

Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản

22 tháng 1 2017

ai đúng cho tích