Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng vế với vế ta được :
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
a, b, c dương
Ta có \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\) (1)
Tương tự \(\frac{b^3}{c}+bc\ge2b^2\) (2) và \(\frac{c^3}{a}+ca\ge2c^2\) (3)
Cộng (1), (2), (3) vế theo vế: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
\(\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Đẳng thức xảy ra tại a=b=c
a/
Biến đổi tương đương:
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(x+y\right)\left(a^2y+b^2x\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+b^2xy+2abxy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu đúng (đpcm), dấu "=" xảy ra khi \(ay=bx\)
b/
Mở rộng cho 3 số, ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Vậy \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x, y, z dương
Mặt khác ta luôn có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) \(\forall a,b,c\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Áp dụng:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{\left(a^2\right)^2}{ab}+\frac{\left(b^2\right)^2}{bc}+\frac{\left(c^2\right)^2}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\)
Dấu "=" xảy ra khi \(a=b=c\)
Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)
Do đó
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)
\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)
\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
a) Đơn giản, tự chứng minh
b) Cách 1: Áp dụng BĐT câu a: \(VT\ge\left(a^2+ab-b^2\right)+\left(b^2+bc-c^2\right)+\left(c^2+ca-a^2\right)=ab+bc+ca=VP\)(đpcm)
Cách 2:
Ta chứng minh BĐT chặt hơn: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (vì \(a^2+b^2+c^2\ge ab+bc+ca\))
Giả sử \(b=min\left\{a,b,c\right\}\).Bằng phương pháp B-W (Buffalo way) ta phân tích được:
\(VT-VP=\frac{\left(4a^2c+4abc-b^3+3b^2c-bc^2\right)\left(a-b\right)^2+b\left(b^2+bc+c^2\right)\left(a+b-2c\right)^2}{4abc}\ge0\)
P/s: Cách 2 tuy dài nhưng rất hay vì đây là phân tích bằng tay (không cần dùng phần mềm)!
b/ Ta có: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{1}{2}\left[\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)+\left(\frac{a^2}{b^2}+\frac{c^2}{a^2}\right)\right]\)
\(\ge\frac{1}{2}.\left(\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\right)=\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)