K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

   \(\frac{1}{1x2}+\frac{1}{3x4}+....+\frac{1}{49x50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)+\left(-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}......+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+......+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

25 tháng 11 2017

Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

8 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Xét vế trái

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)= vế phải

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\) (Đpcm)

4 tháng 12 2019

Nhanh lên nhé

4 tháng 12 2019

Giups mnihf đi

NV
24 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{60}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{50}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

2/ \(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=\frac{7}{12}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}>\frac{7}{12}\)

Tương tự câu trên ta có: \(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(A=\frac{1}{51}+...+\frac{1}{60}+\frac{1}{61}+...+\frac{1}{70}+\frac{1}{71}+...+\frac{1}{80}+\frac{1}{81}+...+\frac{1}{90}+\frac{1}{91}+...+\frac{1}{100}\)

\(A< \frac{1}{50}+...+\frac{1}{50}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{70}+...+\frac{1}{70}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{90}+...+\frac{1}{90}\)

\(A< 10.\frac{1}{50}+10.\frac{1}{60}+10.\frac{1}{70}+10.\frac{1}{80}+10.\frac{1}{90}\)

\(A< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}< \frac{5}{6}\)

25 tháng 7 2016

Ta có : 

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

=> đpcm

Ủng hộ mk nha !!! ^_^

30 tháng 7 2016

\(\text{Ta có :}\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

12 tháng 10 2018

Ta có :

    \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2.\frac{1}{2}-2.\frac{1}{4}-2.\frac{1}{6}-...-2.\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

    Vậy ......

                         ~Hok tốt~

12 tháng 10 2018

CỨ TÍNH VẾ TRÁI R ĐC 

1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

(1+1/3+1/5+...+1/49)+(1+1/2+1/4+...+1/50)-(1/2+1/4+1/6+...+1/50)-(1/2+1/4+1/6+...+1/50)

(1+1/2+1/3+1/4+...+1/50)-2(1/2+1/4+1/6+..+1/50)

(1+1/2+1/4+1/6+...+1/50)-(1+1/2+1/3+..+1/25)

1/26+1/27+...+1/50

15 tháng 1 2017

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\left(đpcm\right)\)

15 tháng 1 2017

cảm ơn bn nha ^.^!!!

27 tháng 3 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+.....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+.....+\frac{1}{50}^{ĐPCM}\)

27 tháng 3 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)