Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/10 + 1/12 + 1/14 + ... + 1/20 > 1/2
= 1/2.5 + 1/2.6 + 1/2.7 + ... + 1/2.10 > 1/2
= 1/2 . 1/5 + 1/2 . 1/6 + 1/2 . 1/7 + ... + 1/2 . 1/10 > 1/2
= 1/2 . ( 1/5 + 1/6 + 1/7 + ... + 1/10 ) > 1/2 => (đpcm)
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
bn ơi bn có thê
rhuowngs dẫn mình
làm ko vì
mai mình ucngx
có bài này
Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)
=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)
\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)
=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
=4
Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{31}\) là S
Ta có:
\(S=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}\right)\)
\(S< 1+\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)\)
\(S< 1+1+1+1+1\)
\(S< 5\)
Vậy \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{31}< 5\)
1/11>1/110 ;1/12>1/110 ......1/109>1/110;1/110=1/110
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}>100\cdot\frac{1}{110}>\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)>\frac{1}{10}+\frac{1}{9}=1\left(đpcm\right)\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 1/18.19.20
2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 +...+1/18.19 - 1/19.20
2A = 1/1.2 - 1/19.20
2A = 1/2 - 1/19.20
A = (1/2 - 1/19.20) : 2
A = 1/4 - 1/(19.20.2)
MÀ 1/(19.20.2) > 0
nên A<1/4