Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
\(A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)+\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)+\left[\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\right]\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)-0\)
\(A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\)
\(\text{Thay }A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\text{ ta có : }\)
\(\left(A-B-1\right)^{1000}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}-1\right)^{1000}\)
\(=\left(1-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)^{1000}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)^{1000}\)
Ta có thể thấy: \(\frac{1}{2000}\) là số hạng nhỏ nhất của dãy.
Xét các mẫu, ta tính được số các số hạng của dãy là:
\(\frac{2000-100}{1}+1=1901\)(số)
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}\)
( 1901 số \(\frac{1}{2000}\))
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1901}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Vậy \(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2}\)
\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}=\frac{1001}{2000}>\frac{1000}{2000}=\frac{1}{2}\)