Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
a,Ta có:\(a^2+b^2\ge2ab\)
\(a^2+c^2\ge2ac\)
\(b^2+c^2\ge2bc\)
Cộng theo từng về 3 bđt trên ta đc:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Xảy ra dấu đt khi \(a=b=c\)
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho \(a+b>0\))
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Xảy ra dấu đẳng thức khi \(a=b\)
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\forall a,b,c\)
Xảy ra đẳng thức khi \(a=b=c=0\)
Phần b mình tặng thêm một cách giải không dùng biến đổi tương đương:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
Dấu bằng tại a=b
c) Áp dụng BĐT Cauchy-schwars ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+b\right)^2}{a+b+c}=a+b+c\)
đpcm
a) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
<=> \(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Ta có: \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{a^2+b^2}{2}.\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\) với mọi a, b
Vậy \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Dấu "=" xảy ra <=> a = b
b) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)(1)
<=> \(2\left(a^4+b^4+c^4\right)\ge ab^3+ac^3+ba^3+bc^3+ca^3+cb^3\)
<=> \(\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\) đúng áp dụng câu a
Vậy (1) đúng
Dấu "=" xảy ra <=> a = b = c.
\(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\right]\ge\dfrac{1}{2}\left(2ab+2bc+2ac\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)\right]\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)(đúng)
\("="\Leftrightarrow a=b=c\)
c1: \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
--> đpcm
Dấu ''='' xảy ra khi a=b=c
c2: Áp dụng bđt AM-GM
\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)+b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^2-ab+b^2\right)\ge0\)
Dấu "=" xảy ra khi \(a=b\)
Dấu ">" xảy ra khi
\(\left(a^2+2ab\dfrac{1}{2}+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2>0\)
\(\Leftrightarrow\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2>0\)
@Toyama Kazuha Giải kiểu gì vậy bạn?
\(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
\("="\Leftrightarrow a=b\)